
Seifeddine Kadry et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 451-456

Robust TCP: An improvement on TCP protocol

Seifeddine Kadry1, Issa Kamar1, Ali Kalakech2, Mohamad Smaili1
1Lebanese University - Faculty of Science, Lebanon

1Lebanese University - Faculty of Business, Lebanon

E-mail: skadry@gmail.com

Abstract – The Transmission Control Protocol (TCP)
is the most popular transport layer protocol for the
internet. Congestion Control is used to increase the
congestion window size if there is additional bandwidth
on the network, and decrease the congestion window
size when there is congestion.
This paper uses a classic TCP which we called Robust
TCP with an accurate algorithm of congestion detection
in order to improve the performance of TCP. Our TCP
Robust only reacts when it receives an ECN (Explicit
Congestion Notification) mark. The evaluation result
shows a good performance in the terms of drop ratio
and throughput.

Keywords: Congestion Control, TCP, ECN, Implicit
Congestion Notification.

I. INTRODUCTION

TCP is a connection-oriented, end-to-end reliable
protocol designed to fit into a layered hierarchy of
protocols which support multi-network applications.
Congestion events in communication networks cause
packet losses, and it's well known that these losses
occur in burst.TCP congestion control involves two
tasks:

1. Detect congestion
2. Limit Transmission rate

To achieve good performance and obtain a Robust TCP,
it is necessary and important to control network
congestion, by limiting the sending rate and regulating
the size of congestion window (Cwnd) after the
detection of congestion.TCP congestion control
operates in a closed loop that infers network conditions
and reacts accordingly by means of losses. A negative
return is due to a loss of a segment which can be
translated by decreasing the flow from the source
through a reduction in the size of window control.
TCP considers loss of a segment as a congestion in the
network, the detection of this loss can be done in
several ways: Timeout, Three Duplicate ACKs (Fast
retransmit) and by receiving a partial ACK.
The state is:

 If Packet Loss or congestion event =>TCP
decreases Cwnd.

 All is well and no congestion in the network,
i.e., TCP increases Cwnd.

At all cases, loss indication should be done with
accuracy because it may lead to false indications like:
Spurious retransmission.
Spurious timeout occurs when a non lost packet is
retransmitted due to a sudden RTT (Round Trip Time)
increase (hand over, high delay, variability, rerouting .
.) which implies to an expiration of the retransmission
timer set with a previous and thus outdated RTT value.
This effect is known to be the root cause of spurious
retransmission.
The function of the congestion control is an essential
element to the stability of the internet.
Indeed, TCP congestion control reduces the flow when
it detects a loss in the network. Therefore, it is
important to be accurate in the loss detection to improve
the performance of TCP.
A congestion event (or loss event) corresponds to one
or several losses (or in the context of ECN: at least one
acknowledgment path with an ECN-echo) occurring in
one TCP window during one current RTT period, it
means that a congestion event begins when the first loss
occurs and finishes one RTT later.
In this paper, we propose a congestion detection
algorithm that is realized independently of the TCP
code. To improve the TCP by reducing the Cwnd, we
aim to illustrate the feasibility of the concept by
demonstrating that we can both obtain similar
performances and also improve the accuracy of the
detection outside the TCP stack.
We implement the Implicit Congestion Notification
(ICN) algorithm to better understand and investigate the
problem of congestion events estimation.
This paper is organized as follows: section 2 presents
related works, section 3 shows the architecture of the
congestion detection, section 4 presents the detailed
discussion for the Robust TCP with ICN congestion
detection algorithm, and section 5 presents an
evaluation of the TCP Robust using simulations.
Finally, section 6 concludes this article and presents
some perspectives.

II. RELATED WORKS:

Over the past few years, several solutions have been
proposed to improve the performance of TCP. In [5]
proposed TCP-DCR modifications to TCP's congestion
control mechanism to make it more robust to non-
congestion events, this is implemented by using the
delay "tau" based on a timer.

ISSN : 0975-3397 451

Seifeddine Kadry et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 451-456

Our mechanism is different; it relies on the accurate
congestion detection algorithm (ICN) and uses the
timestamp option to detect spurious timeout which can
more improve the reliability of the algorithm and leads
to a real Robust TCP.
In Forward RTO-Recovery (F-RTO): the F-RTO
algorithm of the TCP sender monitors the incoming
acknowledgments to determine whether the timeout was
spurious.
TCP suffers from the inaccuracy of the congestion
detection in the other TCP agents, for this reason we
design an accurate mechanism of congestion detection
(ICN) that interacts with TCP robust.
Our study must prove the functionality of our TCP with
ICN is better than other versions of TCP. For this point
we have to show that the mechanism of congestion
detection for some TCP variants (New-Reno, Sack)
doesn’t detect well when there is congestion and doesn't
not work well more than TCP Robust with ICN.
In [5], the idea or the solution proposed for the
detection of congestion is the delay of the time to infer
congestion by T, and this value should be large to
recover from non-congestion event, and should be small
to avoid expensive RTO.
Our approach is different by using a classic TCP that
responds only to an accurate algorithm of congestion
detection.

III. STAND-ALONE TCP CONGESTION EVENTS

ALGORITHMS

In this section we present the architecture of
decorrelating congestion Detection from the Transport
Layer (figure 1).The main goal of this architecture is to
simplify the task of kernel developers as well as
improve TCP performances. This scheme opens the
door to another way to react to congestion by enabling
ECN emulation at end-host. In this case ICN emulates
ECN marking to imply a congestion window reduction.

Figure. 1. Decorrelating Congestion Detecting from the Transport
Layer

IV. ROBUST TCP ALGORITHM:

Our proposed algorithm which we called Robust TCP is
to make the congestion detection reliable and to
distinguish the causes of losses in order to improve the
flow control.
The main idea is to determine CE (i.e. the congestion
detection) which impact on the TCP flow performance
by monitoring the TCP flow itself.
The principle is to obtain a detection system at the edge
of a network or at the sender side which analyses the
TCP behavior through the observation of both data
packets and acknowledgments paths.
So, the scenario is to make a new version of TCP
(Robust TCP) without detection of congestion. Robust
TCP doesn't reacts (reducing of Cwnd) whenever it
doesn't receive a notification ECN. Robust TCP must
interact with ICN algorithm through ECN. Once we
have congestion indication and the congestion event is
validated, in this case it must notify the TCP we are
exploring the functionality of Robust TCP and the ICN
algorithm with the interaction between each other.
Robust TCP maintains all the functions of TCP Reno
(slow start, Congestion avoidance, Fast retransmit and
Fast recovery) and modified by adding error control and
limited transmit (like in New-Reno TCP) to avoid
unnecessary timeouts.
Robust TCP is a classic version of TCP but very
sensitive to packet loss. It contains the major congestion
control phases:
1. Slow start and congestion avoidance (increase

Window size).
2. Fast retransmit (Detection of congestion).
3. Fast recovery.

1. Slow start:

 When ACK received: cwnd++ which means for
every ACK received, the sender sends two
more segments.

 Exponential increase in the window (Every
RTT: cwnd = 2*cwnd)

 Threshold (sstrhesh) controls the change to
congestion avoidance.

2. Congestion avoidance
 When ACK received: cwnd+ = 1/cwnd.
 Linear increment of cwnd (every RTT: cwnd++)

slow start is exists until cwnd is smaller or
equal to ssthresh. Later congestion avoidance
takes over.

3. Fast retransmit:
TCP generates duplicate ACK when out-of-order
segments are received. In this case Fast retransmit uses
"duplicate ACK" to trigger retransmission packets, so
the sender does not wait until timeout for
retransmission, sender retransmits the missing packet
after receiving 3
DUPACK.
4. Fast recovery:

ISSN : 0975-3397 452

Seifeddine Kadry et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 451-456

TCP retransmits the missing packet that was signaled by
three duplicate ACKs and waits for an acknowledgment
of the entire transmit window before returning to
congestion avoidance. If there is no acknowledgment,
TCP Robust experiences a timeout and enters the
Slow-start state.
TCP recovers much faster from fast retransmit than
from timeout. When congestion window is small, the
sender may not receive enough dupacks to trigger fast
retransmit and has to wait for timer to expire but under
Limited transmit, sender will transmit a new segment
after receiving 1 or 2 DUPACKs if allowed by receivers
advertised window to generate more dupacks.
Robust TCP is poor in performance without detection of
congestion and worse than other TCP like TCP New-
Reno and Sack. It reacts only on the receiving of ECN
notification.
Once it doesn't receive a notification that means there is
no congestion control on TCP and the window keep
increasing, but in case of receiving ECN that will
indicate the occurrence of congestion indication notified
by ICN, than Robust TCP reacts by limiting its sending
rate and takes the full meaning of its name.

IV.1 ICN with Timestamp

ICN (implicit congestion notification) is an algorithm
for congestion detection implemented outside the TCP
stack to analyze TCP flow and to better understand the
problem of congestion events and than to conclude if
the congestion occurs in the network or no and it is also
more accurate in congestion detection than TCP.
The main goal of ICN is to determine the losses (i.e. the
congestion detection) which impact on the TCP flow
performance by observing the flow itself which mean
by looking at the losses occurring over an RTT period
given.
ICN is a generic algorithm that doesn't depend on the
TCP version used which implements a congestion
control where a negative feedback means a loss. It is
important to note that ICN doesn't manage the error
control which remains under the responsibility of TCP
Starting from the observation of the data segments and
the acknowledgments, we identify each TCP connection
with a state machine. This state machine indentifies the
control congestion phase and classifies retransmission
as spurious or not.TCP congestion control reacts
following binary notification feedbacks allowing
assessing whether the network is congested or not.
ICN algorithm consists of two states:
1. Normal state: which characterizes TCP connection
without losses, in this state no congestion occurs and
the sender receive the ACK normally.
2. Congestion state: This state starts from the loss of
the first window data segment. When a loss occurs ICN
enters in this state and waits to the congestion event to
be validated to notify Robust TCP about this loss. When

the top of the window is acknowledged, ICN enters in
the normal state.
To improve the performance of the congestion detection
algorithm and especially against spurious timeout we
added the timestamp option, in order once the
congestion happens ICN enter in this state and append a
timestamp to let the sender to compute the RTT
estimate based on returned timestamp in ACK.
Time stamps used in this state to measure the round trip
time (RTT) of a given TCP segment and including
retransmitted segment, this option also can help to
eliminate the retransmission ambiguity (due to false
indication) and identifies when retransmission is
spurious or not.
Spurious Timeout are inevitable and not rare in data
networks, for this reason and once the congestion event
occurs, ICN enter in the congestion event state,
timestamp is added for each data segment. Timestamp
can be considered as an acknowledging mechanism in
the time domain.
In the figure (2) shown below we will present the
flowchart of TCP Robust with ICN mechanism:

Figure 2: Robust TCP with ICN detection algorithm

IV.2 Robust TCP and ICN interaction

ICN is an accurate congestion detection algorithm
where after detecting a loss event in the congestion
state, the congestion event (CE) must be validated.
The validation of CE should lead to a congestion
indication which is the principle responsible to inform
the Robust TCP about the congestion. The confirmation
method due to a congestion indication is ECN (Explicit
congestion notification), which is the main fag in the
ACK to notify the loss to the source TCP. Once the
source is signaled by ECN notification it reacts by

ISSN : 0975-3397 453

Seifeddine Kadry et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 451-456

reducing its window (Cwnd) and this time Robust TCP
takes the full meaning of its name.
After reducing its window, we can notice very well the
decreasing of the number of dropped packets (d) in the
network due to using of ICN congestion detector and
our TCP becomes better in performance than others like
TCP New-Reno and Sack.

V. VALIDATIONS AND EVALUATIONS

In this section we evaluate the performance of Robust
TCP with ICN algorithm. The main idea is to build an
algorithm of congestion detection outside the TCP stack
that is responsible to detect the loss and notify it to
Robust TCP.
The architecture of our tools is shown in the figure (3),
which is mainly composed from the following
components:
1. Network topology.
2. Traffic model.
3. Performance evaluation metrics.
After the simulation is done, a set of result statistics and
graphs are generated.

Figure 3: Architecture of our tools

V .1 Network topology
 To study our TCP and ICN behavior we built our
Network and application model shown in figure (4), in
which source nodes and sink nodes connect to router 1
or router 2. The bandwidth between the two routers is
much lower than the other links, which causes the link
between the routers to be a bottleneck. (Traffic can be
either uni-directional or bidirectional).

Figure 4: Network topology

V.2 Traffic Model
The tool attempts to apply the typical traffic settings. In
our application include the FTP traffic that uses infinite,
non-stop file transmission, which begins at a random
time and runs on the top of TCP. Implementation details

and a comparative analysis of TCP Tahoe, Reno, New-
Reno, SACK and Vegas choices of TCP variant are
decided by users.

V.3 Performance evaluation metrics

The metrics used in our simulations are Throughput and
Drop ratio. Throughput is the total elapsed flow since
the beginning of simulation time. Throughput may also
includes retransmitted traffic (repeated packets).Drop
ratio is the total rate of packet loss during the simulation
time. To obtain network statistics, we measure also the
drop ratio metric that result in the failure of the receiver
to decode the packet and simulation time is 100
seconds.
Robust TCP is poor in performance as a standalone
TCP but after adding the ICN it becomes much better
(see figure 5) and accurate than TCP New-Reno as
show in the figure (6). To evaluate our scenario, we
compare TCP Robust with other TCP variants (TCP
New-Reno) by using different metrics that will show us
clearly the improvement of our TCP version compared
to others. (Figure 6 and 7).

Figure 5: Comparison between TCP Robust before and after adding

ICN algorithm.

The main difference between Robust and New-Reno
TCP occurs in the reaction of each protocol. In the TCP
New-Reno the reaction will be whenever an error or
congestion occurs on the network by slowdown the
transmission without being accurate if there is a
congestion or not. In addition of that the main problem
of New-Reno TCP that it suffers from the fact that it
takes one RTT to detect each packet loss. When the
ACK for the first retransmitted segment is received only
then we can deduce which other segment was lost. This
problem of inaccuracy in TCP New-Reno is solved by
the ICN algorithm that the ICN receive the packet and
check the presence of congestion by using the normal
and congestion phase and by adding the timestamp
option which can be make sure of the presence of
congestion or no. The deduction of congestion in TCP
Robust is different from New-Reno, it will be deduced

ISSN : 0975-3397 454

Seifeddine Kadry et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 451-456

after signaling ECN from ICN to TCP robust, and then
the TCP reacts by decreasing the transmission. This
accuracy in detection of congestion can be up to 24 %
as difference between the two protocols (Figure 6)
before reaction of each one and starting slowdown
retransmission.
Due the fast reaction of TCP robust, the transmission of
TCP become less than in TCP New-Reno which means
that the throughput in the TCP robust must be less than
in New-Reno, this is clear and deduced in the figure 7.

Figure 6: Comparison between TCP Robust and TCP New-Reno

In figure (6) represents that the drop ratio is less in
Robust than in New-Reno due that TCP reacts only
when receiving ECN which make its reaction faster.

Figure 7: Comparison between TCP Robust and TCP New-Reno

In figure (7) Robust TCP algorithm reaction is faster
than the Reaction of New-Reno, thus Throughput in
New-Reno is higher than when using Robust TCP.
Congestion detection used by ICN algorithm is more
accurate when using the timestamp option for detecting
a spurious timeout which improve more the
performance of TCP.
The main difference between spurious timeout
algorithms relies on the method how to detect spurious

timeout by solving the retransmission ambiguity in
many circumstances. After clarifying this ambiguity
TCP can tell whether the data is there is spurious
timeout has happened or not. DSACK, F-RTO and
Robust TCP can see the problem of spurious timeout in
different aspects.
DSACK, an extension of TCP SACK, works it out in
the sequence space. It requires the TCP receiver
explicitly acknowledging duplicate segments with
duplicate SACK options. F-RTO algorithm is used for

detecting spurious retransmission timeouts with
TCP. It is a TCP sender-only algorithm that does
not require any TCP options to operate-RTO delays
the decision of loss recovery and waits further two
ACK. If the first arrived ACK forwards the sender's
transmitting window, TCP concludes a spurious
timeout and resume transmitting new data.
Our approach is different than other TCP by using
an algorithm of congestion detection outside the
TCP code, where it can detect congestion and
spurious timeout by using the timestamp option at
the occurrence of loss or congestion event. The
main advantage of ICN with timestamp algorithm
is that it can work with spurious timeouts and the
others loss events by detecting the congestion in the
network immediately and then directly will be

notified to Robust TCP in order that TCP after this
action will reduce its window, which can improve very
well the performance of our TCP.

VI. Conclusion and Future Work

This paper has proposed a new algorithm, which is
implemented as a stand alone component and not inside
a TCP stack. This algorithm that interacts with a classic
version of TCP is able to detect congestion and notify
directly the loss to the Robust TCP through the
congestion notification (ECN) in order to reduce its
window which leads to a Robust TCP compared to
other variants like New-Reno and SACK TCP. In our
work we demonstrate that congestion event detection
can be realized independently of the TCP code in sake
of better detecting congestion occurring in the network.
Following this work and the results obtained so far, we
are currently planning to develop more the detection of
congestion by using the delay-based in the congestion
detection algorithm (ICN) and the effect of fast reaction
of TCP robust in the Network.

References

[1] P.sarolahti and M. kojo. Forward rto-recovery (f-tro):
An algorithm for detecting spurious retransmission
timeouts with tcp and the stream control transmission
protocol (sctp).rfc 4138,IETF, August 2005.

[2] P. Anelli and F. Harivelo, E. lochin. On TCP
congestion events detection.

[3] Reiner Ludwig and Randy H..Katz. The Eifel
algorithm: making TCP robust against spurious
retransmissions. SIGCOMM Comput. Common. Rev.,
30(1):30-36, 2000.

ISSN : 0975-3397 455

Seifeddine Kadry et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 451-456

[4] K. Ramakrishnan, S. Floyd, and D. Black. The
addition to explicit congestion notification (ECN) to
ip. Request for comments 3168,IETF, September
2001.

[5] Bhandarkar, S. and Reddy, A.L.N. (2004),
Networking, May TCP-Dcr: Making TCP Robust to
Non-Congestion Events.

[6] S. Floyd ICSI December 2003. RFC 3649 - High
Speed TCP for Large Congestion Windows.

[7] A Comparative Analysis of TCP Tahoe, Reno, New-
Reno, SACK and Vegas.

[8] RFC 793 Transmission Control Protocol, September
1981.

[9] RFC 3649 High Speed TCP for Large Congestion
Windows, S. Floyd December 2003.

BIOGRAPHY:

Dr. Seifedine Kadry received his
master's degree in Modeling and
Intensify Calculus (2001) from the
Lebanese University – EPFL -
INRIA. He received his PhD (2003-
2007) in applied mathematics from
Blaise Pascal University, and IFMA,

France. He worked as Head of Software Support and
Analysis Unit at First National Bank. He published
many papers in national and international journals. His
research interests are in the areas of Computer Science,
Numerical Analysis and Stochastic Mechanics. Since
2009, Dr Kadry is an associate professor at the
Lebanese University.

 Dr. Mohamed Smaili received the
masters' degree in Computer Science
from the University of Monpelier II
(USTL), France, in 1990. He received
his Ph.D. in Computer Science from
the University of Monpelier II
(USTL), France, in 1993. Since 1994

he teaches at the Lebanese University, Faculty of
Science. He published many papers in national and
international conferences. His research interests are
fuzzy logic, digital circuits and simulation.

 Issa Kamar received his master's
degree in Computer Science and
communication (2004) from the AUL
University – LEBANON. Currently He
is a his PhD student at the Lebanese
University. The goal of his PhD thesis is
to study and improve the TCP protocol.

ISSN : 0975-3397 456

