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Abstract - We address the problem of computation 
involved in RSA algorithm namely exponentiation 
under modulo arithmetic and various mathematical 
and timing attacks in RSA. The computation is made 
easy and quick by assigning elements from the 
fundamental group in algebraic topology. This can 
also be regarded as a Zero Knowledge Interactive 
Protocol (ZKIP). 
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I. INTRODUCTION 

 
Depending upon the applications of public key 
systems are characterized by either sender’s private 
key or receiver’s public key or both to perform 
some type of cryptographic functions. It  can be 
encryption and decryption, digital signature or key 
exchange[9]. The counter measure to brute force 
attack is use of large key sizes. Diffie-Hellman 
change cryptologist that met the requirements of 
the public key cryptographic systems. The 
approaches attacking RSA mathematically[6] rest 
on factoring a number in product of primes, 
calculation of two relatively prime numbers to 

)(n . It is in turn increased in computing power 

and refinement of factoring algorithm to avoid 
other timing attacks. We place here a cyclic group 
structure of the fundamental group in algebraic 
topology. We say this is a break through in the 
cryptographic protocols based on Zero Knowledge 
statistical zero knowledge interactive protocol in 
which a statistical Interactive Protocol. 
  
Related Work 

Kocher [7] was the first to discuss timing attacks.. 
Timing attacks exploit the timing variations in 
cryptographic operations. Because of performance 
optimizations, computations performed by a 
cryptographic algorithm often take different 
amounts of time depending on the input and the 
value of the secret parameter. If RSA private key 
operations can be timed reasonably accurately, in 
some cases statistical analysis can be applied to 

recover the secret key involved in the 
computations.  

         Cryptographic algorithms that rely on 
modular exponentiation such as RSA and Diffie-
Hellman may be vulnerable to timing attacks. If the 
exponentiation operation that involves the secret 
key can be timed by an attacker with reasonable 
accuracy, the key can be recovered by using 
carefully selected input values, the number of 
which being proportional to the length of the key. It 
is feasible to recover the RSA private keys used in 
these systems. Defenses against such attacks are 
possible. Today, the most widely used method is 
RSA blinding which incurs a small performance 
penality of 2% to 10%. Timing attacks illustrate 
that attackers do not necessarily play by the 
presumed rules and they will always attack the 
weakest link in a system. Strong cryptography 
gives us security only if it is implemented and used 
in ways that complement its strength. 

II. SECTION I 
 
A. Basic Concepts 
We start with the following definitions used in the 
subsequent work 
 
B. Definition 1 Discrete log problem 

An ordinary logarithm )(log ba  is a solution of the 

equation bax     over the real or complex 

numbers. Similarly, if g  and h  are elements of a 

finite cyclic group G   then a solution x  of the 

equation hg x    is called a discrete logarithm to 

the base g of h in the group G  

 
C. Definition 2 Discrete Exponentiation 

 In general, let G  be a finite cyclic group 
with n  elements. We assume that the group is 

written multiplicatively. Let b  be a generator of 

G ; then every element g  of G  can be written in 

the form 
kbg   for some integer .k  

Furthermore, any two such integers representing 
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g  will be congruent modulo .n  We can thus 

define a function bLog : G  (where nZ  

denotes the ring of integers modulo n ) by 

assigning to g  the congruence class of k  modulo 

.n  This function is a group isomorphism, called 

the discrete logarithm to base b [4]. 
 

Given an element g  and the values of 
xg  and .yg  Formally, g  is a generator of some 

group (typically the multiplicative of a finite field 
or an elliptic group) and x  and y  are randomly 

chosen integers. For example, in the Diffie-
Hellman key exchange, an eavesdropper observes 

xg  and 
yg  exchanged as part of the protocol, 

and the two parties both compute the shared key 

.xyg   

D. Definition 3 Relative Entropy 
Discrete logarithms are perhaps simplest 

to understand in the group .)( 
pZ  This is the set 

of congruence classes )1,...,1 p  under 

multiplication modulo the prime p . 

 

If we want to find the 
thk  power of one of the 

numbers in this group, we can do so by finding its 
thk  power as an integer and then finding the 

remainder after division by p . This process is 

called discrete exponentiation. For example, 

consider .)( 17
Z  To compute 

43  in this group, 

we first compute ,8134   and then we divide 81 

by 17, obtaining a remainder of 13. Thus 1334   

in the group .)( 17
Z  Discrete logarithm is just the 

inverse operation. For example, take the equation 

)17(mod133 k
 for k . As shown above 

4k  is a solution, but it is not the only solution. 

Since )17(mod1316   it also follows that if n  

is an integer then 

).17(mod131133 164  nn
 Hence the 

equation has infinitely many solutions of the form 

.164 n  Moreover, since 16 is the smallest 

positive integer m  satisfying ),17(mod13 m
 

that is 16 is the order of 3 in ,)( 17
Z  these are the 

only solutions. Equivalently, the solution can be 

expressed as ).16(mod4k 
 
E. Definition 4 Discrete log Problem in finite 

Group 

There are three main groups whose 
discrete logarithm is of interest to cryptographers 
[15].  

The multiplicative group of prime fields: )(PGF  

The multiplicative group of finite fields of 

characteristic 2: )2( nGF  

Elliptic curve groups over finite fields F: )(FEC  

The security of many public key 
algorithms is based on the problem of finding 
discrete logarithms, so the problem has been 
extensively studied. 
   

If P  is the modular and is prime, then the 
complexity of finding discrete logarithm in  

)(PGF  is eventually the same as factoring an 

integer n  of about the same size, when n  is the 
product of two approximately equal–length primes. 
Computing discrete logarithms is closely related to 
factoring. If you can solve the discrete logarithm 
problem, then you can factor. Currently there are 
three methods for calculating discrete logarithms in 
prime field: the linear Sieve, the Gaussian integer 
Scheme and the number field sieve. 

 
F. Definition 5 Homotopy 

Let X  and Y  be topological spaces, and 

let 0f  and 1f  
be continuous maps .YX   0f  

is homotopic to )(Written 101 fff   if there 

exists a continuous maps YIXF :  such 

that )()0,( 0 xfxF   and )()1,( 1 xfxF   for 

all .Xx  The map F  is called a homotopy 
from  

0f  to .1f   

 

G. Properties of Zero Knowledge Proof 
     Zero-knowledge proofs (ZKPs) are interactive 
proofs (protocols) in which the prover proves the 
knowledge (or the possession) of a secret without 
revealing any information about the secret itself[5]. 
ZKPs can be used whenever there is critical data to 
exchange while only proving the possession of 
such data is needed, without a real need for 
exchanging the critical data. 
 
    Completeness Property 
 For any 0c  and sufficiently long 

,Lx  Probability (V  accepts x ) .1
c

x
  

In other words, an interactive proof (protocol) is 
complete if, given an honest prover and an honest 
verifier, the protocol succeeds with overwhelming 
probability. 
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  Soundness Property 
For any 0c  and sufficiently long ,Lx  

Probability (V  accepts x ) 
c

x
 , i.e. negligible, 

even if the prover deviates from the prescribed 
protocol. In other words, if a dishonest prover 'P  
can successfully execute the protocol with non 
negligible probability, then 'P  has knowledge 
essentially equivalent to the actual secret 
 
  Zero Knowledge Proof 
An interactive proof  VP,  is called zero-

knowledge if for every probabilistic polynomial-

time *V , there exists a probabilistic expected 

polynomial-time simulator (algorithm) *vM  that 

on inputs Lx  produces probability distributions 

 xM v*  polynomially indistinguishable from the 

distributions  xVP  *, . 

 
III. SECTION II 

 
A. Problem specification 

Early Version of RSA 
1. Pick 2 primes p and q make pqn   

public  
2. find )(n and an element e  < n and 

relatively prime to )(n  

        1)),(gcd( en  

3.   For a plain text nm  the cipher text is 
given by 

       nMc e mod  

4. From c  to get M   

        ncM d mod  

where d is the 
multiplicative inverse of 
e ,    )(mod n  

        )(mod1 ned   

  Here we take the n , the number of elements in 

the F  fundamental group which is cyclic. Since 
the order of a cyclic group is prime, n is prime[8]. 
Find two fundamental group of order p and q . As 

with RSA 
                       pqn    

To calculate  e , we identify M to be a 

generator of the cyclic group F and 
      gM   

Therefore ngc e mod , e  < n and 

relatively prime to )(n  and other steps of 

RSA 

           ncM d mod  

                  nM de mod)(  

                  nM ed mod  
 
Using Euler’s theorem  
     1)(  nked   

Thus generating the discrete log problem to 
F group. 
  We can find  e , d and hence the scheme is 
derived. 

     The computation of  n , e and eM  are done 
using a ZKIP between two paties and making 
this computation to be done in 50 % of trials.[2] 
        This is strong over any timing and 
transport confidentiality attack. 
       To find a crypto system using fundamental 
group in algebraic topology, we need to find a 
hard problem corresponding to factoring the 
product of two primes are taking the discrete 
logarithm in modulo multiplication and modulo 
exponentiation employed in RSA scheme which 
are prone to mathematical and timing attacks. 

 
B. Illustration 

Let  61p , 59q  
       pqn   

           35995961   

 )(n  34805860   

         31e  
We find by extended Equlips algorithm, the 
multiplicative inverse 3480mod  as 

449d . 
     For any text, which has the value of the 
generator of cyclic group can be taken as the 

plain text M . 31M  will be the cipher text. 
 

IV. SECTION III 
 

A. Our Method 
            Each element in RSA setup is 
identified as an element in the fundamental 
group as a product of two mapping is the 
multiplication modulo n, as viewed in RSA 
algorithm. 
Thus the modulo arithmetic and 
exponentiation are done as compositions and 
expressing elements as a power of a generator 
of a cyclic group. [1] 

The computation of   are done using a ZKIP 
between two parties and making this 
computation to be done in 50 % of trials.[3] 

        This is strong over any timing and 
transport confidentiality attack 
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V. SECTION V 
 

A. Conclusion and Future work 
       This concludes that the mathematical and 
timing  attacks from the RSA algorithm is 
made hard by identifying the fundamental 

group nS  and alternative generator along 

with the inverses in the fundamental group. 
This protocol is considered as a discrete log 
problem presented in Zero Knowledge 
Interactive Protocol in one round. 
      Thus completeness , soundness and zero 
knowledge are evident from the analysis of 
the algebraic structure for the cyclic group 

nS  

 
VI. REFERENCES 

 
[1] Alfred Renyi, Foundations of Probability, London: 

Holden-Day, Inc., 1970 
[2] Cramer, R. and Damgard, I. “Linear zero-knowledge – a 

note on efficient zero-knowledge proofs and arguments.” 
Proceedings of the Twenty-ninth Annual ACM Symposium 
on Theory of Computing. Texas: United States (1997), 
pp.436-445. 

[3] Deborah Joseph. Polynomial time computations in models 
of ET. Journal of Computer and System Sciences, Vol.26, 
No.3 (1993), pp.311-338 

[4] Diffie, W. and Hellman, M.E,“New directions in 
cryptography”,IEEE Trans. Inform. Theory, Vol.IT-22, 
No.6 (1976), pp.644-654. 

[5] Goldwasser, S., Milcli, S. and Rackoff, C. The knowledge 
complexity of interactive proof-systems. SIAM Journal on 
Computing, Vol.18 (1989), pp.186-208. 

[6] Kaliski, B., and Robshaw, M.,” The Secure use of RSA”, 
Crypto Bytes,Autumn 1995. 

[7] Kocher, P, “ Timing attacks on Implementations of Diffie-
Hellman, RSA, DSS and other systems”, Proceedings, 
crypto (1996), August 1996. 

[8] S.Samundeeswari, “ZKIPS and their Variants for Crypto 
Systems”, Thesis submitted to SASTRA University, India, 
2009. 

[9] Stallings, William. Cryptography and Network Security. 
India: Pearson Education, 2007. 

 

 
VII. AUTHORS PROFILE 

 
 

A. Prof . M . Thiyagarajan  
 
He has graduated from university of madras at 
1960 and Post Graduate from Annamalai 
University. He has obtained his M.Phil from the 
University of Madras with Specialization in 
Stochastic Processes and Application . He has 
guided more than 50 M.Phil research scholars and 
20 Phd scholars. He has Published /Presented more 
than 100 papers in various known applications of 
stochastic processes invariant for and abstract 
algebra. At present he is guiding 4 people on 
Cryptography parallel algorithms and VLSI design. 
He is currently working as a Professor in the 

School of Computing of SASTRA University , 
Tanjore, Tamil Nadu. 
 

B. Mrs. S.Samundeeswari 
 
Hails from Thanjavur,Tamil Nadu. She received 
the B.Tech Degree in Computer Science and 
Engineering from Bharathidasan University ,Trichy 
in 1993 and M.Tech degree in Computer Science 
and Engineering from SASTRA University in 
2005.She is currently with SASTRA University as 
a senior faculty in the School of Computing. Her 
research interests include Network security and 
Cryptography. She has published more than 10 
National/International articles in various journals. 
She has attended more than 15 
National/International Conferences and seminars 
conducted by leading Engineering Institutions. She 
has also guided projects for IT Graduate students. 
 
 

 
 

ISSN : 0975-3397 436




