
S.R. Biradar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 02, 2010, 340-344

A Comparison of the TCP Variants
Performance over different Routing Protocols

on Mobile Ad Hoc Networks
S. R. Biradar 1, Subir Kumar Sarkar2 , Puttamadappa C3

1Sikkim Manipal Institute of Technology, Majitar, Rangpo, East Sikkim -737 132, SIKKIM
2 Electronics and Telecommunication Enginnering Department,

Jadavpur University, Kolkata- 700 032 WEST BENGAL
3 Electronics and Communications Department,

SJBIT, Bangalore, KARNATAKA

Abstract: We describe a variant of TCP (Tahoe, Vegas),
TCP is most widely used transport protocol in both wired
and wireless networks. In mobile ad hoc networks, the
topology changes frequently due to mobile nodes, this leads
to significant packet losses and network throughput
degradation. This is due to the fact that TCP fails to
distinguish the path failure and network congestion. In this
paper, the performances of TCP over different routing
(DSR, AODV and DSDV) protocols in ad hoc networks was
studied by simulation experiments and results are reported.

1. INTRODUCTION

Recent advances in wireless communication and portable
devices have resulted in the rapid growth of mobile
wireless networks leads to the exponential growth of the
cellular network, which is based on the combination of
wired and wireless technologies. Wireless[1] networks
are fast becoming popular as they allow users to remain
connected when they are moving. The wireless network
can be either be infrastructure based or infrastructure less
(ad hoc) networks.

A Mobile Ad Hoc Network (MANET) is considered an
autonomous collection of wireless mobile nodes that are
capable of communicating with each other without the
use of a network infrastructure or any centralized
administration[5]. Due to the host mobility, the network
topology may change rapidly and unpredictably over
time. The network is decentralized no administrator is
required to manage network. It is self organizing and
enables communication in situations where there is no
time to set up the necessary infrastructure or situations
where the need for a communication network is
temporally required. MANETs have a wide range of
applications form military to search and rescue
operations during disaster. The interest of the scientific
and industrial community in the area of
telecommunications has recently shifted to more
challenging scenarios in which a group of mobile units
equipped with radio transceivers communicate without
any fixed infrastructure.

I. Transmission Control Protocol (TCP)
Transmission Control Protocol[11,2,3] is the Internet’s
most widely used transport control protocol. TCP’s

strength lies in the adaptive nature of its congestion
avoidance and control algorithm and its retransmission
mechanism, first proposed by V. Jacobson[6,7] as a part
of TCP Tahoe. It was further refined in Reno and New
Reno versions of TCP. TCP Vegas[9], proposed by
Brakmo et al. proposes a fundamentally different
congestion avoidance scheme from that of TCP Tahoe.
The major control mechanisms of TCP are its congestion
avoidance and congestion control mechanism. They are
discussed in detail below:

Slow Start: Before TCP can send data at a fast rate, it
needs to estimate the bandwidth available. If this is not
done, the throughput of the TCP connection will
drastically decrease, as the intermediate routers would
have to queue or drop the packets form buffer, if buffer is
full. The slow start mechanism adds a new parameter that
controls the rate at which packets are sent, congestion
window denoted by cwnd. When a new TCP connection
is established, the initial value of cwnd is set to a value
less than or equal to 2*Maximum Segment Size (MSS),
but not greater than two segments. Every time an ACK
segment is received, the cwnd is increased by one
segment. Thus, when an ACK arrives that acknowledges
the first packet, the cwnd is increased to two and two
data segments are sent. When ACKs for these two
segments arrives, the cwnd is increased to four. It
provides an exponential increase to the cwnd parameter.
The TCP sender can send up to the minimum of
receiver’s advertised window and its own value of cwnd.
TCP remains in this exponentially increasing slow start
phase as long as cwnd value is less than or equal to slow
start threshold (ssthresh)
Congestion Avoidance: Congestion avoidance is the
algorithm used by TCP to avoid losing packets, if packets
are lost. TCP performs congestion avoidance[4,8,12]
when cwnd is greater than ssthresh. In the congestion
avoidance phase, the cwnd is increased by 1 full-sized
segment every round-trip time (RTT). Congestion
avoidance continues until congestion is detected.
Congestion can be detected in two ways:

1) Receipt of duplicate acknowledgment
2) Due to time timeout.

If the detection is done using the retransmission timer

S.R. Biradar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 02, 2010, 340-344

timeout, the value of ssthresh is updated as follows:
 ssthresh = max (Flight Size / 2, 2*MSS)

Flight Size is the amount of outstanding data in the
network. Then cwnd is set to 1 segment. After the packet
has been retransmitted (whose timer had expired), TCP
starts again in the slow start mode using the above
mentioned algorithm to raise the cwnd from 1 to the new
value of ssthresh, after which, congestion avoidance
again.
 However, instead of the retransmission timer expiring, if
three duplicate ACKs (three duplicate ACK is equal to
four identical ACKs without the arrival of any other
packet in between) were received at the sender, TCP
assumes that it is an indication of packet loss. It then uses
what is called the “fast retransmit” and “fast recovery”
algorithm to recover the packet and fill the network
again. The
 TCP sender does the following on the arrival of the third
duplicate ACK:
Set ssthresh to the value given in the equation above.
Retransmit the lost packet and set cwnd to ssthresh +
3*MSS (fast retransmit).
For each additional duplicate ACK that is received, cwnd
is incremented by one MSS.
If this new value of cwnd and receiver window allows,
transmit new segment(s).
When the ACK that acknowledges the receipt of a new
segment is received, set cwnd to ssthresh (fast recovery).

TCP Vegas
 TCP Vegas was proposed by Brakmo et al. It has a
very different congestion control algorithm compared to
New Tahoe. TCP Vegas[10] in general controls its
segment flow rate based on its estimate of the available
network bandwidth. Among the many new features
implemented in TCP Vegas, the most important
difference between it and TCP Tahoe lies in its
bandwidth estimation scheme. Studies on TCP Vegas
have shown that Vegas achieves higher efficiency than
Tahoe, causes fewer packet retransmissions.
 TCP Vegas dynamically varies its sending window
size based on fine-grained measurement of RTTs,
whereas TCP Tahoe continues to increase its window
size until packet loss is detected. While TCP Tahoe views
packet losses as a sign of network congestions, TCP
Vegas uses a sophisticated bandwidth estimation scheme,
wherein it uses the difference between the expected and
achieved flow rates to estimate the available bandwidth
in the network. The idea is that when the expected and
actual throughputs are almost equal, the network is not
congested. In other words, in a congested scenario, the
actual throughput will be much smaller than the
expected. Thus, based on this estimate of network
congestion, TCP Vegas updates the congestion window
from the following equations:
1) expected_rate = cwnd(t)/base_rtt

Where cwnd(t) is the current congestion window

size and base_rtt is the minimum RTT of that
connection.

2) actual_rate = cwnd(t)/rtt
Where rtt is the present round-trip time

3) diff = expected_rate – actual_rate
The source estimates the backlog in the router queue
from the difference

4) Using this value of diff, the congestion window
value (cwnd) is adjusted as:

cwnd +1 if diff < α
cwnd –1 if diff > β
cwnd = cwnd otherwise

 When expected and the actual throughput are close
to each other, the connection may not be utilizing the
available network bandwidth, and hence should increase
the flow rate. On the other hand, when the actual
throughput is much less than the expected throughput,
the network is probably experiencing congestion and
hence the connection should reduce the flow rate.
Impact of mobility on TCP performance:
TCP suffers from throughput degradation because of
mobility in MANETs. Route failure is one of the key
characteristics of a mobile ad hoc, whenever the route
fails, a TCP connection that is using the route can
potentially reduce congestion window.
Each TCP variant has its own advantages or
disadvantages. Which TCP variant provides is efficient in
MANETs scenarios? The performance comparison of
TCP variants on the same set of test scenarios should be
investigated. The results are helpful for congestion
control protocol designer.

Performance Metrics:
 Packet Delivery Ratio: The ratio between the
number of packets originated[5] by the application layer
FTP sources and the number of packets received by the
FTP sink at the final destination.
 Routing Overhead: The total number of
routing packets transmitted during the simulation. Each
hop wise transmission if a control message by a node is
counted as one transmission.

End-to-End Throughput: Average successful
transmission rate measure of the number of packets
successfully transmitted to their final destination per unit
time.
 Average Delay: The average time a packet
takes to reach its destination.(delay between the time
when a data packet is given to IP layer at the source node
and the time when the packet arrives at the IP layer of the
destination). This can only computed for packets that are
successfully delivered.
 MAC Overhead: The number of routing , ARP,
and control packets (RTS, CTS and ACK) transmitted by
the MAC layer essentially it considers the both routing
and MAC control overhead. It is similar routing
overhead, this metric is also accounts for transmission at
every hop. Large routing and MAC control overhead

S.R. Biradar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 02, 2010, 340-344

impacts both throughput and delay, it also causes
network congestion.
Simulation Environment:

The experiments were conducting using the ns-2
network simulator[13], developed at the University of
California at Berkeley, with the wireless extensions
provided by the CMU Monarch Project. The radio
model is based on the Lucent Technologies WaveLAN
802.11 product, providing a 2 Mbps transmission rate
and transmission range of 250 m. The link layer modeled
is the Distributed Coordination Function (DCF) of the
IEEE 802.11 wireless LAN standard. In this simulation
25 mobile nodes moved in an area of 500m x 500m for a
period of 500 seconds. Random Waypoint (RW) mobility
pattern was generated using the setdest tool which is a
part of the ns-2 distribution. The maximum speed Vmax
was set to 0, 1, 2, 5 and 10 m/sec to generate different
movement patterns for same mobility model. The traffic
pattern was generated by the cbrgen tool that is part of
the ns-2 distribution. The traffic consisted of 1, 2, 5, 10
and 15 FTP connections. The source destination pairs
were chosen at random. The data rate used was 8
packets/sec, window size 32 and the packet size was 512
bytes. The three thresholds α, β and γ are set to be 1, 3
and 1, and parameter p in slow start phase is set to be 1/8
as default.

Presentation and Results:
PDR and routing overhead graphs are achieved under
DSR, AODV and DSDV routing protocol are shown in
figure 1, 2 and 3 respectively.

a) Packet Delivery Ratio

b)Routing Overhead

Figure 1(DSR)
Figure 1a shows the PDR a function of the number of
FTP sources for the two different values of mobility (no
mobility, and 1m/s mobility).
PDR is maximum for TCP Vegas compared to TCP
Tahoe.
FTP Traffic has little impact on TCP Vegas, where as
TCP Tahoe get affected by both mobility as well as
traffic.
Routing overhead shown in Figure 1b. It shows the
increase of the traffic correspond to increase in routing
overhead. However the overhead without mobility lower
in both the cases.
It shows the increase of the mobility to increase in packet
drop approximately 50 packets. Control overhead is
higher in Tahoe than Vegas.

a) Packet Delivery Ratio

S.R. Biradar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 02, 2010, 340-344

b) Routing Overhead

Figure 2 (AODV)

TCP Vegas PDR was higher than TCP Tahoe. The figure
2a shows that the ability of the protocol to deliver the
packet to their destination degrades as the traffic increase
in Tahoe.
Vegas packet drop increase slower then Tahoe. In vegas
mobility model has little impact on packet drop. Routing
overhead increase with respect to number of FTP
connection.

a) Packet Delivery Ratio

b) Routing Overhead
Figure 3 (DSDV)

The PDR graph in Figure 3a show that constant PDR.
The RTR graph shows the increasing in mobility increase
the traffic approximately 8-10%. The routing overhead in
Vegas and Tahoe on different mobility is very similar in
both the cases (no mobility and 1m/s mobility).

CONCLUSION
Reactive routing protocol overhead increase as FTP
connections increase, in case of proactive routing
protocol overhead is almost constant. PDR decrease as
number of FTP connection increase in reactive protocol.
TCP do not affect the proactive routing protocol. Overall
Vegas perform compared to Tahoe.
Coparsion of Tahoe vs Vegas shown in table 1.

Table 1

References

[1] A. Bon, C. Caini, T. De Cola, R. Firrincieli, D. Lacamera, M.
Marchese, An integrated testbed for wireless advanced transport
protocols and architectures, in: Proc. IEEE TridentCom, Barcelona,
Spain, Mar. 2006, pp. 522-525.
[2] Allman, M., Floyd, S., and Partridge, C., "Increasing TCP's Initial
Window," RFC 2414, September 1998.
[3] Allman, M., Paxson, V., and Stevens, W., "TCP Congestion
Control," RFC 2581, April 1999.
[4] Floyd, S., "TCP and Explicit Congestion Notification," ACM
Computer Communication Review , Vol. 24, No. 5, October 1994.
[5] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva.. A
performance comparison of multi-hop wireless ad hoc network routing
protocols. In
Proceedings of the International Conference on Mobile Computing and
Networking (MobiCom’98), Oct. 1998
[6] Jacobson V., "Congestion Avoidance and Control," ACM Computer
Communication Review , Vol. 18, No. 4, August 1988.
[7] Jacobson, V., Braden, R., and Borman, D., "TCP Extensions for
High Performance," RFC 1323, May 1992.
[8] L. Xu, K. Harfoush, I. Rhee, Binary increase congestion control for
fast long distance networks, in: Proc. IEEE INFOCOM, Hong Kong,
March 2004, vol. 4, pp. 2514–2524.
[9] L.S. Brakmo and L.L. Peterson, TCP Vegas: End to end congestion
avoidance on a global internet, IEEE J. Select. Areas Commun. 13
(1995), pp. 1465–1480.
[10] L.A. Grieco and S. Mascolo, Performance evaluation and

 Tahoe Vegas

Slow Start, cwnd
updated with every
ACK as

cwnd+ 1 Increase every other
RTT

Congestion
avoidance, cwnd
update with every
ACK as

cwnd+
1/cwnd

Linear increase
 if Diff< α
Linear decrease
if Diff> β

Change from slow
start to congestion
avoidance when

cwnd=
ssthresh

Diff< γ

Fast recovery none Retransmit with ACK if
RTT>timeout

ACK format required ACK ACK

S.R. Biradar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 02, 2010, 340-344

comparison of Westwood+, New Reno, and Vegas TCP congestion
control, ACM Computer Commun. Review 34 (2004), pp. 25–38.
[11] Postel, J., "Transmission Control Protocol," RFC 793, September
1981.
[12] S. Floyd, T. Henderson, A. Gurtov, The NewReno modification to
TCP’s fast recovery algorithm, IETF RFC, 3782, 2004.
[13] The ns Manual. The VINT Project. A Collaboration between
researchers at UC Berkeley, LBL, USC/ISI, and Xerox PARC.

