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Abstract: We describe a variant of TCP (Tahoe, Vegas), 
TCP is most widely used transport protocol in both wired 
and wireless networks. In mobile ad hoc networks, the 
topology changes frequently due to mobile nodes, this leads 
to significant packet losses and network throughput 
degradation. This is due to the fact that TCP fails to 
distinguish the path failure and network congestion.  In this 
paper, the performances of TCP over different routing 
(DSR, AODV and DSDV) protocols in ad hoc networks was 
studied by simulation experiments and results are reported. 
 
1. INTRODUCTION 

Recent advances in wireless communication and portable 
devices have resulted in the rapid growth of mobile 
wireless networks leads to the exponential growth of the 
cellular network, which is based on the combination of 
wired and wireless technologies. Wireless[1] networks 
are fast becoming popular as they allow users to remain 
connected when they are moving. The wireless network 
can be either be infrastructure based or infrastructure less 
(ad hoc) networks.   
 
A Mobile Ad Hoc Network (MANET) is considered an 
autonomous collection of wireless mobile nodes that are 
capable of communicating with each other without the 
use of a network infrastructure or any centralized 
administration[5]. Due to the host mobility, the network 
topology may change rapidly and unpredictably over 
time. The network is decentralized no administrator is 
required to manage network. It is self organizing and 
enables communication in situations where there is no 
time to set up the necessary infrastructure or situations 
where the need for a communication network is 
temporally required.  MANETs have a wide range of 
applications form military to search and rescue 
operations during disaster.  The interest of the scientific 
and industrial community in the area of 
telecommunications has recently shifted to more 
challenging scenarios in which a group of mobile units 
equipped with radio transceivers communicate without 
any fixed infrastructure. 
 

I. Transmission Control Protocol (TCP) 
Transmission Control Protocol[11,2,3] is the Internet’s 
most widely used transport control protocol. TCP’s 

strength lies in the adaptive nature of its congestion 
avoidance and control algorithm and its retransmission 
mechanism, first proposed by V. Jacobson[6,7] as a part 
of TCP Tahoe. It was further refined in Reno and New 
Reno versions of TCP. TCP Vegas[9], proposed by 
Brakmo et al. proposes a fundamentally different 
congestion avoidance scheme from that of TCP Tahoe. 
The major control mechanisms of TCP are its congestion 
avoidance and congestion control mechanism. They are 
discussed in detail below: 
 
Slow Start: Before TCP can send data at a fast rate, it 
needs to estimate the bandwidth available. If this is not 
done, the throughput of the TCP connection will 
drastically decrease, as the intermediate routers would 
have to queue or drop the packets form buffer, if buffer is 
full. The slow start mechanism adds a new parameter that 
controls the rate at which packets are sent, congestion 
window denoted by cwnd. When a new TCP connection 
is established, the initial value of cwnd is set to a value 
less than or equal to 2*Maximum Segment Size (MSS), 
but not greater than two segments. Every time an ACK 
segment is received, the cwnd is increased by one 
segment. Thus, when an ACK arrives that acknowledges 
the first packet, the cwnd is increased to two and two 
data segments are sent. When ACKs for these two 
segments arrives, the cwnd is increased to four. It 
provides an exponential increase to the cwnd parameter. 
The TCP sender can send up to the minimum of 
receiver’s advertised window and its own value of cwnd. 
TCP remains in this exponentially increasing slow start 
phase as long as cwnd value is less than or equal to slow 
start threshold (ssthresh)  
Congestion Avoidance: Congestion avoidance is the 
algorithm used by TCP to avoid losing packets, if packets 
are lost.  TCP performs congestion avoidance[4,8,12] 
when cwnd is greater than ssthresh. In the congestion 
avoidance phase, the cwnd is increased by 1 full-sized 
segment every round-trip time (RTT). Congestion 
avoidance continues until congestion is detected. 
Congestion can be detected in two ways:  

1) Receipt of duplicate acknowledgment   
2) Due to time timeout.  

If the detection is done using the retransmission timer 



S.R. Biradar et al. / (IJCSE) International Journal on Computer Science and Engineering 
Vol. 02, No. 02, 2010, 340-344 

 

timeout, the value of ssthresh is updated as follows: 
    ssthresh = max (Flight Size / 2, 2*MSS) 
 
Flight Size is the amount of outstanding data in the 
network. Then cwnd is set to 1 segment. After the packet 
has been retransmitted (whose timer had expired), TCP 
starts again in the slow start mode using the above 
mentioned algorithm to raise the cwnd from 1 to the new 
value of ssthresh, after which, congestion avoidance 
again. 
 However, instead of the retransmission timer expiring, if 
three duplicate ACKs (three duplicate ACK is equal to 
four identical ACKs without the arrival of any other 
packet in between) were received at the sender, TCP 
assumes that it is an indication of packet loss. It then uses 
what is called the “fast retransmit” and “fast recovery” 
algorithm to recover the packet and fill the network 
again. The 
 TCP sender does the following on the arrival of the third 
duplicate ACK: 
Set ssthresh to the value given in the equation above.       
Retransmit the lost packet and set cwnd to ssthresh + 
3*MSS (fast retransmit). 
For each additional duplicate ACK that is received, cwnd 
is incremented by one MSS. 
If this new value of cwnd and receiver window allows, 
transmit new segment(s). 
When the ACK that acknowledges the receipt of a new 
segment is received,  set cwnd to ssthresh (fast recovery). 
 
TCP Vegas 
        TCP Vegas was proposed by Brakmo et al.  It has a 
very different congestion control algorithm compared to 
New Tahoe. TCP Vegas[10] in general controls its 
segment flow rate based on its estimate of the available 
network bandwidth. Among the many new features 
implemented in TCP Vegas, the most important 
difference between it and TCP Tahoe lies in its 
bandwidth estimation scheme. Studies on TCP Vegas 
have shown that Vegas achieves higher efficiency than 
Tahoe, causes fewer packet retransmissions. 
        TCP Vegas dynamically varies its sending window 
size based on fine-grained measurement of RTTs, 
whereas TCP Tahoe continues to increase its window 
size until packet loss is detected. While TCP Tahoe views 
packet losses as a sign of network congestions, TCP 
Vegas uses a sophisticated bandwidth estimation scheme, 
wherein it uses the difference between the expected and 
achieved flow rates to estimate the available bandwidth 
in the network. The idea is that when the expected and 
actual throughputs are almost equal, the network is not 
congested. In other words, in a congested scenario, the 
actual throughput will be much smaller than the 
expected. Thus, based on this estimate of network 
congestion, TCP Vegas updates the congestion window 
from the following equations: 
1) expected_rate = cwnd(t)/base_rtt 

Where cwnd(t) is the current congestion window 

size and base_rtt is the minimum RTT of that 
connection. 

2) actual_rate = cwnd(t)/rtt 
Where rtt is the present round-trip time 

3) diff = expected_rate – actual_rate 
The source estimates the backlog in the router queue 
from the difference 

4) Using this value of diff, the congestion window 
value (cwnd) is adjusted as: 

cwnd +1 if diff < α 
cwnd –1 if diff > β 
cwnd =   cwnd   otherwise 

 
        When expected and the actual throughput are close 
to each other, the connection may not be utilizing the 
available network bandwidth, and hence should increase 
the flow rate. On the other hand, when the actual 
throughput is much less than the expected throughput, 
the network is probably experiencing congestion and 
hence the connection should reduce the flow rate. 
Impact of mobility on TCP performance: 
TCP suffers from throughput degradation because of 
mobility in MANETs. Route failure is one of the key 
characteristics of a mobile ad hoc, whenever the route 
fails, a TCP connection that is using the route can 
potentially reduce congestion window.   
Each TCP variant has its own advantages or 
disadvantages. Which TCP variant provides is efficient in 
MANETs scenarios? The performance comparison of 
TCP variants on the same set of test scenarios should be 
investigated. The results are helpful for congestion 
control protocol designer. 
 
Performance Metrics:  
 Packet Delivery Ratio: The ratio between the 
number of packets originated[5] by the application layer 
FTP sources and the number of packets received by the 
FTP sink at the final destination. 
 Routing Overhead: The total number of 
routing packets transmitted during the simulation. Each 
hop wise transmission if a control message by a node is 
counted as one transmission. 

End-to-End Throughput: Average successful 
transmission rate measure of the number of packets 
successfully transmitted to their final destination per unit 
time. 
 Average Delay: The average time a packet 
takes to reach its destination.( delay between the time 
when a data packet is given to IP layer at the source node 
and the time when the packet arrives at the IP layer of the 
destination). This can only computed for packets that are 
successfully delivered. 
 MAC Overhead: The number of routing , ARP, 
and control packets (RTS, CTS and ACK) transmitted by 
the MAC layer essentially it considers the both routing 
and MAC control overhead. It is similar routing 
overhead, this metric is also accounts for transmission at 
every hop. Large routing and MAC control overhead 
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impacts both throughput and delay, it also causes 
network congestion.   
Simulation Environment: 

The experiments were conducting using the ns-2 
network simulator[13], developed at the University of 
California at Berkeley, with the wireless extensions 
provided by the CMU Monarch Project.  The radio 
model is based on the Lucent Technologies WaveLAN 
802.11 product, providing a 2 Mbps transmission rate 
and transmission range of 250 m. The link layer modeled 
is the Distributed Coordination Function (DCF) of the 
IEEE 802.11 wireless LAN standard. In this simulation 
25 mobile nodes moved in an area of 500m x 500m for a 
period of 500 seconds. Random Waypoint (RW) mobility 
pattern was generated using the setdest tool which is a 
part of the ns-2 distribution.  The maximum speed Vmax 
was set to 0, 1, 2, 5 and 10 m/sec to generate different 
movement patterns for same mobility model. The traffic 
pattern was generated by the cbrgen tool that is part of 
the ns-2 distribution. The traffic consisted of 1, 2, 5, 10 
and 15 FTP connections. The source destination pairs 
were chosen at random. The data rate used was 8 
packets/sec, window size 32 and the packet size was 512 
bytes. The three thresholds α, β and γ are set to be 1, 3 
and 1, and parameter p in slow start phase is set to be 1/8 
as default. 
 
Presentation and Results: 
PDR and routing overhead graphs are achieved under 
DSR, AODV and DSDV routing protocol are shown in 
figure 1, 2 and 3 respectively.   

 
a) Packet Delivery Ratio 

 
 
 
 
 
 
 
 
 

 

 
b)Routing Overhead 

Figure 1(DSR) 
Figure 1a shows the PDR a function of the number of 
FTP sources for the two different values of mobility (no 
mobility, and 1m/s mobility). 
PDR is maximum for TCP Vegas compared to TCP 
Tahoe. 
FTP Traffic has little impact on TCP Vegas, where as 
TCP Tahoe get affected by both mobility as well as 
traffic. 
Routing overhead shown in Figure 1b. It shows the 
increase of the traffic correspond to increase in routing 
overhead. However the overhead without mobility lower 
in both the cases. 
It shows the increase of the mobility to increase in packet 
drop approximately 50 packets.   Control overhead is 
higher in Tahoe than Vegas. 
 

a) Packet Delivery Ratio 
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b) Routing Overhead 

Figure 2 (AODV) 
 

TCP Vegas PDR was higher than TCP Tahoe. The figure 
2a shows that the ability of the protocol to deliver the 
packet to their destination degrades as the traffic increase 
in Tahoe.  
Vegas packet drop increase slower then Tahoe. In vegas 
mobility model has little impact on packet drop. Routing 
overhead increase with respect to number of FTP 
connection. 

a) Packet Delivery Ratio 

b) Routing Overhead 
Figure 3 (DSDV) 

 
The PDR graph in Figure 3a show that constant PDR. 
The RTR graph shows the increasing in mobility increase 
the traffic approximately 8-10%. The routing overhead in 
Vegas and Tahoe on different mobility is very similar in 
both the cases (no mobility and 1m/s mobility).   
 
CONCLUSION 
Reactive routing protocol overhead increase as FTP 
connections increase, in case of proactive routing 
protocol overhead is almost constant. PDR decrease as 
number of FTP connection increase in reactive protocol. 
TCP do not affect the proactive routing protocol. Overall 
Vegas perform compared to Tahoe. 
Coparsion of Tahoe vs Vegas shown in table 1. 

Table 1 
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Slow Start, cwnd 
updated with every 
ACK as  

cwnd+ 1 Increase every other 
RTT 

Congestion 
avoidance, cwnd 
update with every 
ACK as  

cwnd+ 
1/cwnd 

Linear increase 
 if Diff<  α 
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if Diff>  β 

Change from slow 
start to congestion 
avoidance when  

cwnd= 
ssthresh  

Diff< γ 

Fast recovery none Retransmit with ACK if 
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ACK format required ACK ACK 
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