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Abstract— The reliability of distributed systems in which the 
communication links are considered reliable while the computing 
nodes may fail with certain probabilities have been modeled by a 
probabilistic network or a graph G. Computing the residual 
connectedness reliability (RCR), denoted by R(G), of probabilistic 
networks with unreliable nodes is very useful, but is an NP-hard 
problem. To derive the exact R(G) expressions for large networks 
can become rather complex. As network size increases, the 
reliability bounds could be used to estimate the reliability of the 
networks. In this paper, we present an efficient algorithm for 
computing the reliability upper bound of distributed systems 
with unreliable nodes. We also apply our algorithm to some 
typical classes of graphs in order to evaluate the upper bound 
and show the effectiveness and the efficiency of the new 
algorithm. Numerical results are presented. 
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I.  INTRODUCTION 

There are various reliability problems that occur when a 
distributed system is modeled by a probabilistic network or a 
graph G whose nodes and/or edges may fail [1]. The ability of 
the communication between the residual (remaining working) 
nodes is measured by the RCR R(G), which is the probability 
that the residual nodes can communicate with each other 
[2],[3]. 

Generally, there are three kinds of fault models in a 
probabilistic network [1]:  

 Edge fault model: The nodes of a graph are perfectly 
reliable, but the edges fail independently with certain 
probabilities. 

 Node fault model: The edges of a graph are perfectly 
reliable, but the nodes fail independently with certain 
probabilities. 

 Node-and-edge fault model: Nodes and edges fail 
independently of each other, with node and edge 
failure probabilities. 

For all these three fault models, it has been shown that the 
analysis problems are all NP-hard [1],[4][6]; that is, there 
exists no efficient algorithms for computing R(G). 

There are quite a number of papers dealing with 
approximation algorithms for estimating R(G) under the node 
fault model [7]-[12]. Colbourn [7] proposed a polynomial 
algorithm of certain restricted classes of graphs, including 
trees, series-parallel graphs, and permutation graphs. He and 
Chen [8] developed efficient algorithms of arbitrary graphs, 
and bound expressions for estimating R(G). They 
demonstrated theoretically and numerically that the difference 
between the upper and the lower bounds gradually tends to 
zero as the number of nodes tends to infinity under the 
condition that the node failure probability is reasonably low, 
e.g., less than 0.1. He, Tian and Chen [9] presented a new 
approach that combines a Monte Carlo simulation scheme and 
the deterministic bounding approach in [8] to obtain a 
probabilistic point estimator for R(G). Mohamed, Xiaozong, 
Hongwei and Zhibo [11] proposed an efficient algorithm for 
reliability lower bound of distributed systems with unreliable 
nodes. They showed that their algorithm is faster than the 
algorithm for the lower bound by He and Chen [8],[9]. They 
also demonstrated that their lower is tighter than the lower 
bound in [8],[9]. Mohamed, Xiaozong, Hongwei and Zhibo 
[12] improved the efficiency and the effectiveness of their 
algorithm in [11]. 

Since it may need exponential time of the network size to 
compute the exact value of R(G), it is important to calculate its 
tight approximate value at a moderate calculation time. 

In this paper, we present a new approach with efficient 
algorithm for evaluating the reliability upper bound of 
distributed systems under the node fault model. We apply our 
algorithm to some typical classes of graphs to evaluate the 
upper bound and show the effectiveness and the efficiency of 
the new algorithm. We also demonstrate that the new upper 
bound is tighter than the upper bound in [8],[9], and is 
calculated in time O(n2), where n is the number of nodes in G. 

II. NOTATIONS AND ACRONYMS 

RCR Residual Connectedness Reliability 
UB Upper Bound 
NF Node Fault 
G graph 
n number of nodes in G 
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q node failure probability 
R(G) residual connectedness reliability 

 R G  upper bound of R(G) 

III. METHOD 

The residual connectedness reliability, R(G), of a 
probabilistic graph G is the probability that the residual 
subgraph is connected. We thus have the following definition: 

R(G) = Pr{the subgraph induced by the residual nodes 
                 of G is connected},                                            (1) 

where Pr{A} stands for the probability of random event A. 

Without loss of generality, we assume that graph G is 
connected initially and its node set is V = {v1, …, vn}. 

Let E denote the random event that the residual nodes 
induced subgraph is connected, and E  is the complement 
event of E. then, according to formula (1), we have 

     Pr 1 PrR G E E   .                       (2) 

Then the UB of reliability R(G) is given in Theorem 1. 

Theorem 1: Let r = S, S  V, and S = {u1, …, ur}, where 
any two nodes of S have not any common neighbor node in G, 
and the nodes of any pair of adjacent nodes in S have the same 
degree in G. Then the UB of R(G) is 

    
1

1 1 i

r
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i

R G q q


   ,                        (3) 

where q is the node failure probability,  i G if N u , and 

 G iN u  is the neighboring set of nodes ui in G. 

Proof: Let Fi be the event that ui is isolated in the residual 
subgraph of G, i = 1, …, r. Then 
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It is obvious that Fi occurs if and only if ui is operating and 
all its neighbor nodes fail. The probability that such an event 
occurs is 

   Pr 1 if
iF q q  , i = 1, …, r.                      (6) 

Let ju  and ku  be a pair of nodes in S and ,j kd be the 

distance between ju  and ku  in G. Then since ju  and ku  do 

not have any common neighbor in G, it is clear that , 2j kd  . 

That is, ,j kd  is either 1 or at least 3. Consequently, for ju and 

ku  with , 3j kd  , it is clear that j kF F   . Suppose that 

ju and ku  with , 1j kd  , then from the definition of jF  and 

kF , it is obvious that ju  is operating in jF  but is failed in kF , 

while ku  is operating in kF  but is failed in jF , and since ju  

and ku  do not have any common neighbor in G, we have 

j kF F   . 

Therefore 
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Thus from (5), (6) and (7), we get 

    
1

1 1 i

r
f
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R G q q


   . 

Now the question is how tight is this bound with respect to 
the number of nodes in S. From the proof of the theorem we 
can see that the more nodes are included in S, the tighter the 
UB will be. Thus, in order to obtain a tighter UB, we must find 
the set S with as many nodes as possible. 

IV. ALGORITHM  FOR THE UPPER BOUND 

Based on the constructive method for estimating the UB 
above, we can obtain an algorithm which estimates the 
reliability UB. According to Theorem 1, the bigger the set S, 
the best the UB is. 

A. Preparation 

Before we derive the algorithm, we need the following 
procedure to find the set S. 

Procedure S(G) 
Input: graph G 
Output: a set S of graph G 
 1   S  , H V , 0i   
 2   while H    
 3          do 1i i   
 4               iu  the node in H with min degree in G 

 5                iS S u   

 6               0neig   

 7               for each node  G iv N u  

 8                     do if 0neig   

 9                              then if v and iu  have the same degree and  
                                             do not have any common neighbor 
                                             in G  
10                                         then remove v, iu and their neigh- 
                                                      bors and neighbors of the nei-  
                                                      ghbors from H 
11                                                  1i i   
12                                                  iu v  

13                                                   iS S u   

14                                                  1neig   
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15              if 1neig   

16                  then remove iu  and its neighbors and neighbors 
                               of the neighbors from H 
17  return S  
 
  
 

B. Algorithm 

The following algorithm finds the UB  R G  of R(G). 

Algorithm Upper-Bound 
Input: graph G, the node failure probability q 

Output:  R G  /*  R G  according to Theorem 1*/ 

1      1R G   

2     S S G  

3    for every node ui of S 

4          do       1 1 ifR G R G q q          

5    return  R G  

V. EXAMPLE 

To demonstrate our method algorithm, the sample network 
by Fig. 1 is considered. 

 

 

 

 

 

 

 

For the sample network in Fig. 1, it is clear that  

 1 2 3 4 5 6 7 8, , , , , , ,V v v v v v v v v ; 

   1 2 3,GN v v v , 1 2f  ; 

   2 1 4,GN v v v , 2 2f  ; 

   3 1 4 5, ,GN v v v v , 3 3f  ; 

   4 2 3 6, ,GN v v v v , 4 3f  ; 

   5 3 7 8, ,GN v v v v , 5 3f  ; 

   6 4 7 8, ,GN v v v v , 6 3f  ; 

   7 5 6 8, ,GN v v v v , 7 3f  ; 

   8 5 6 7, ,GN v v v v , 8 3f  . 

 1 1 2 3, ,F v v v   ,  2 2 1 4, ,F v v v   ,  3 3 1 4 5, , ,F v v v v    , 

 4 4 2 3 6, , ,F v v v v    ,  5 5 3 7 8, , ,F v v v v    , 

  6 6 4 7 8, , , ,F v v v v    ,  7 7 5 6 8, , ,F v v v v    , 

 8 8 5 6 7, , ,F v v v v    , where iv  means that node iv is 

operational and ivmeans that iv  is failed. 
Applying our method and algorithm to the sample network 

in Fig.1, we obtain that 

 1 2 7 8, , ,S v v v v and 

             
     

7 81 2

2 2
2 3

1 1 1 1 1 1 1 1

1 1 1 1 .

f ff fR G q q q q q q q q

q q

         

    
 

VI. THE COMPLEXITY OF THE BOUND 

For computing the UB, the main computational process is 
to find a set S in the procedure S(G). This procedure can be 
done in time O(n2), while the calculation of the bound value, 
taken directly from the Theorem 1, can be done in time O(n). 
Thus the complete algorithm for UB takes O(n2) operations. 

VII. COMPUTATIONAL RESULTS AND DISCUSSION 

To show the effectiveness and efficiency of the new UB, 
we apply our algorithm to some typical classes of graphs such 
as hypercube, circle and Harary graph, simply because these 
structures allow simpler routing algorithms, higher fault-
tolerance ability and reliability. For example, in a p-dimension 
hypercube, or p-hypercube for short, denoted by pQ , a large 

number of computing nodes ( 2 p nodes) are connected using a 
smaller number of communication links (p links per node, 
instead of 2 1p   links per node as required by a complete 
graph) while keeping a minimal communication delay between 
the nodes. The hypercube has a symmetric and regular 
topology, which is very easy to understand and utilize. 

To computationally examine the effectiveness and the 
efficiency of the new UB four sets of graphs were used (see 
tables 14). When compared to the UB by He and Chen [8,9], 
in each instance the new UB of this paper was tighter. 

TABLE 1 UPPER BOUNDS FOR PATH GRAPH nP  

n  q UB by He [8,9] New UB 

64 
0.1 0.691124 0.631382 
0.01 0.978359 0.977391 

0.001 0.997983 0.997973 

256 
0.1 0.387498 0.265072 
0.01 0.972179 0.968145 

0.001 0.997919 0.997877 

1024 
0.1 0.038294 0.008235 
0.01 0.947849 0.932029 

0.001 0.997664 0.997495 

 

TABLE 2 UPPER BOUNDS FOR CIRCLE GRAPH nC  

n  q UB by He [8,9] New UB 

64 
0.1 0.827079 0.748785 
0.01 0.997923 0.996837 

 
 

Fig.1 Sample network 
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0.001 0.999979 0.999968 

256 
0.1 0.463725 0.31436 
0.01 0.99162 0.987407 

0.001 0.999915 0.999872 

1024 
0.1 0.045826 0.009766 
0.01 0.966803 0.950573 

0.001 0.999659 0.999489 

 

 

TABLE 3 UPPER BOUNDS FOR HYPERCUBE pQ WITH P = 4 

q  UB by He [8,9] New UB 
0.1 0.99982 0.99964 
0.08 0.999925 0.999849 
0.06 0.999976 0.0.999951 
0.04 0.999995 0.99999 

 

TABLE 4 UPPER BOUNDS FOR HARRARY GRAPH ,n kH  WITH n = 16 & k = 3 

q  UB by He [8,9] New UB 
0.1 0.99982 0.99964 
0.08 0.999925 0.999849 
0.06 0.999976 0.0.999951 
0.04 0.999995 0.99999 

 

As a result, our algorithm is very efficient and can easily be 
implemented for evaluating reliability UB for distributed 
systems with unreliable nodes. The new algorithm produce a 
good approximation for RCR that can be used in general study 
in graphs and computer networks. 

VIII. CONCLUSIONS 

In this paper, a new approach with efficient algorithm for 
evaluating the reliability upper bound of distributed systems 
with unreliable nodes has been presented. We have applied our 

method to several typical classes of graphs (networks) to show 
the effectiveness and the efficiency of the new algorithm. Our 
approach produces a good evaluation for RCR that can be used 
in general study in graphs and computer networks. 
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