
Richa Gupta et al / International Journal on Computer Science and Engineering Vol.2(1), 2010, 92-97

92

A Novel Pair of Replacement Algorithms on
L1 and L2 Cache for FFT

Abstract__ Processors speed is much faster than memory;
to bridge this gap cache memory is used. This paper
proposes a preeminent pair of replacement algorithms for
Level 1 cache (L1) and Level 2 cache (L2) respectively for
the Fast Fourier Transform (FFT). The access patterns of
L1 and L2 are different, when CPU does not get the
desired data in L1 then it refers to L2. Thus the
replacement algorithm which works efficiently for L1
may not be efficient for L2. With the memory access
pattern of FFT, the paper has simulated and analyzed the
behavior of various existing replacement algorithms on
L1 and L2 respectively. The replacement algorithms
which are taken into consideration are: Least Recently
Used (LRU), Least Frequently Used (LFU) and First In
First Out (FIFO).
 This paper has also proposed new replacement
algorithms for L1 (FFTNEW1) and for L2 (FFTNEW2)
respectively for the same application. Simulation results
shows that by applying the proposed pair of replacement
algorithms miss rates are considerably reduced.

Key words: Level 1 Cache (L1), Level 2 Cache (L2),
Replacement Algorithms, Access Pattern, Fast Fourier
Transform (FFT).

I. INTRODUCTION

To bridge the speed gap between main memory and
processor, cache memory is used. Cache memory
works with the principle of locality. The principle of
locality refers that CPU does not requires all the
code/data at a time. The principle of locality can be
spatial or temporal [1, 2, 3].

Whenever a block is requested from CPU, first of
all it is searched on L1 if the required page is found in
L1 it is a hit else a miss. When L1 is saturated and it is
a miss then a block from L1 is to be evicted to create a
space for the required page. Various replacement
algorithms, such as LRU, FIFO, LFU [4, 5] etc are
used to select the victim page. L1 is having better
temporal locality than L2, as L2 is accessed when a
miss occurs on L1. The pages which are often used are
likely to be used again i.e. hot pages should remain in

L1 and cold pages should be taken off and are placed
in the main memory. Whenever a page is evicted from
L1 it will be placed on L2. The nature of pages which
reside on L2 should be neither too cold nor too hot i.e.
moderate. Place for hot pages is L1 and that for cold
pages is in the main memory [3]. Most of the algorithm
tries to keep hot pages in the cache but from the above
discussion it is clear that this is not the requirement for
L2 cache. Thus the replacement algorithm which is
suitable for L1 may not be suitable for L2.

Furthermore various algorithms and applications
such as Matrix Multiplication, Fast Fourier transform,
Networks, Databases etc., will have varying accesses
to the memory thus resulting in varying principal of
locality. Thus same replacement algorithm may not be
suitable for various applications and algorithms, as
different applications may have different access
patterns.

Replacement algorithms on L1 & L2

Initially if any block is referenced then it will suffer
with compulsory miss. If a reference suffers a miss
because of saturated cache, then replacement algorithm
will evict a block. The replacement algorithms are
based on some criteria as mentioned earlier may be
recency, frequency etc. The replacement algorithms
which are taken into account are Least Recently Used
(LRU), First in First out (FIFO), Least Frequently
Used (LFU).
Analyzing the access pattern of L2 we have discussed
that L2 is having poor temporal locality as compared to
L1. If the required block is not in L1 it is searched in
L2 and then in main memory. It means that L2 will
also suffer with initial misses. L2 is larger than L1, so
after the initial misses the probability of the data to
remain in L2 is high.

For analyzing the behavior of various replacement
algorithms on L2, size of L1 is fixed and size of L2 is
varied from double the size of L1. Replacement
algorithm used on L1 is LRU, while on L2 the

Ms. Richa Gupta
Reader, Computer Science and Engineering

K C Bansal Technical Academy, Indore, India
richa_tg@rediffmail.com

Dr. Sanjiv Tokekar
Prof. & Head, Electronics and Telecom. Engg.
Institute of Engineering and Technology, DAVV

 Indore, India
sanjivtokekar@yahoo.com

ISSN : 0975-3397

Richa Gupta et al / International Journal on Computer Science and Engineering Vol.2(1), 2010, 92-97

93

replacement algorithms LRU, FIFO, LFU are applied
to analyze the behavior of these algorithms on L2.

Literature Review

Various studies have been done for the cache
replacement algorithms for single level cache.
Basically the replacement algorithms can be divided in
three criterions of recency, frequency and mixture of
both recency and frequency. The recency based
algorithms are such as Least Recently Used (LRU)
[4,6], Least Recently Used k references (LRU-k)
[7], this approach basically keeps track of the times of
last k references of the popular page, with this
information it statically estimates inter arrival time of
references of the page. Most Recently Used (MRU) [4,
6] etc. The frequency based algorithms are such as
Least Frequently Used (LFU) [4, 6], least Frequently
Used k references (LFU-k) [8], this algorithm is
basically improvement of LFU, in this amount of
references is calculated with some parameters such as
speed, acceleration, Frequency Based Algorithm (FBR)
[9] this algorithm selects the victim using combination
of reference frequency and block age. Algorithms
using both the criterion of recency and frequency are
such as Least Frequently Recently Used (LFRU) [10],
this algorithm decides, how much more weightage be
given to recent history than to older history, Low Inter-
reference Recency (LIRs) [11], this algorithm
evaluates Inter Reference Recency (IRR) for deciding
the victim, 2Q is an improvement of LRU and LRU-2,
which solves correlated reference problem [12],
Second Chance Frequency- Least Recently Used (SF-
LRU) [13], it uses both the basic algorithms LRU and
LFU with the concept of second chance and calculates
recency frequency control value to decide the victim.
etc.
 Much work has not been done for second level
cache replacement algorithm. A comprehensive study
of second level cache management was given by Zhou
et al., which emphasizes that access pattern of second
level cache is different than first level. More
specifically it presents a new algorithm Multi queue
(MQ) to effectively manage second-level buffer
caches. It was evaluated on nine-replacement
algorithms, which were basically designed for single
level [3]. Michael et al. proposes a policy “Karma”
which uses application hints to partition the cache and
to manage each range of blocks with the policy best
suited for its access pattern [14].

Wayne et al. shows that an opportunity exists to
close the gap between Optimality (OPT) and the LRU
algorithms, they present a replacement algorithm based
on the detection of temporal locality in the L2 cache,
the block to be taken out is chosen by considering both
its priority in the LRU stack and whether it exhibits

temporal locality or not [15]. Nikolas et al has given
the concept of cache conscious hash table, which
shows improvement both in time and space [16].
Aleksandar et al. illustrates performance evaluation of
cache design issues such as cache size and
organization, block size and replacement policy in
embedded processor. It suggests suitable replacement
policy for data cache, instruction cache and unified
cache [17].

We are focusing our research on suitable
replacement algorithm for FFT. James et al proposes
an algorithm for FFT which maximizes the use on in-
cache operations [18]. Bevan suggests that cache
improves the effectiveness, if the memory access
pattern exhibits sufficient locality. It has proposed
energy efficient, single chip 1024-point FFT Processor.
It has used FFT algorithm which offers good locality
over large span of computations [19]. Sakr et al works
on learning and predicting memory access Patterns of
FFT with the help of Time Delay Nueral Network
(TDNN), which in turn reduces number of faults [20].
M. Frigo et al has given optimal algorithms for matrix
transpose, FFT with multiple levels of caching [21].
Naga K. Govindaraju et al cache efficient algorithms
for scientific computation using Graphics Processing
Units (GPUs). It exploits data parallelism and high
memory bandwidth in GPU. It has worked for sorting,
FFT, Matrix Multiplcation and shows that FFT
algorithm is able to achieve 10* performance
improvement over Xeon or Opteron processors [22].
Jizhu Lu et al have described various implementation
issues and have compared the performance with state –
of-the-art FFT implementations on Intel and AMD
with Cell BE Processor [23]. Bushra et al. suggests
replacement policy should take into account cache
performance as well as traffic generated by the cache.
The author focuses on several dynamic replacement
policies with the motivation to reduce the traffic last
level of cache to main memory, while not increasing
the number of misses [24]. Jinwoo et al focuses on
microprocessor architecture that implement processor-
in memory, stream processing and tiled processing. It
has described about Coherent side-lobe canceller
(CLSC), in which most of the computation time is
spent on FFT and IFFT operations, thus for
performance improvement appropriate FFT algorithm
has been used for each architecture [25].

Based on the above study our goal is to work on
pair of replacement policies which works efficiently on
L1 and L2 cache for FFT memory access pattern.

Based on above discussion it works on the following
criterion:

ISSN : 0975-3397

Richa Gupta et al / International Journal on Computer Science and Engineering Vol.2(1), 2010, 92-97

94

(i) To find out the performance of different
replacement algorithms on L1 among existing
algorithms taken into consideration (LRU, LFU,
FIFO).

Finding out the preeminent pair of replacement
algorithms on L1 and L2 respectively among
(ii) existing algorithms taken into consideration (LRU,

LFU, FIFO).
(iii) This paper also proposes pair of new replacement

algorithms for L1 (FFTNEW1) and for L2
(FFTNEW2).

II. MATERIALS AND METHODS

1. Analysis of Replacement algorithms on L1

To analyze the behavior of the replacement
algorithms mentioned above; reference string of FFT is
generated. For simulation a model of 128 point Fast
Fourier transform (FFT) is taken. For each replacement
algorithm, Miss Rate is calculated for varying size of
L1.

With the variation of size of FFT the required
maximum size of L1 will vary. Considering N point
FFT N references will be for the input and N/2
references will be for various constants, thus total
different references will be N+N/2. Thus there will be
at least N+N/2 initial misses. If the cache size is
N+N/2 then it will not suffer with any other misses. In
the analysis the cache size is varied till N+N/2 i.e. up
to 192 as we are considering 128 point FFT.

2. Analysis of Replacement Algorithm on L1 and L2
Similarly for analyzing the behavior of mentioned
replacement algorithm on L2 the same setup is used as
in L1. Here the L1 is fixed to 1/4th (32) of the required
memory (192) and L2 is varied from 64 till N+N/2.

3. Proposed Replacement Algorithms on L1 and L2
After analyzing the access pattern of FFT and
comparing all the results, new replacement algorithms
for L1 and L2 are developed.
 Considering the calculation of FFT it can be
realized that while calculation constant W0 is used
maximum number of times. As W0 =1, thus while
accessing we are not accessing the location of W0.
 Along with this, we have realized, with the
previous analysis that for lower cache size LRU is
performing better and for higher cache size FIFO is
performing far better than LRU and LFU. After
analyzing this behavior for various point FFT’s, we
realized a common criterion. For example if the FFT is
128 than up to cache size 128 LRU will perform better
and after that FIFO’s performance is better; for FFT 64
up to 64 LRU is better and after that FIFO is better;
and so on . Thus for generalization we had taken that if

the FFT point is N than up to N LRU better and after
that FIFO’s performance is better. On behalf of this
criterion we developed a new replacement algorithm
NEW1FFT for This replacement algorithm takes
benefit of both LRU and FIFO for N point FFT, till
cache size N it behaves like LRU and after that it
behaves like FIFO.
Same kind of behavior was also recognized for L2 and
based on the same criterion another replacement
algorithm FFTNEW2 has been developed.

4. Fixing Cache size and varying the FFT Size
An additional criterion for the analysis is taken as
fixing the size of L1 and L2 and varying the FFT size
and count the number of misses. Here we are fixing the
size of L1 to 32, L2 to 128 and varying the FFT point
from 8 to 1024.

III. RESULTS

1. Performance Analysis of FFTNEW1 on L1
The results of various replacement algorithms

on L1 are as shown in Fig. 1, which gives the miss
rates for different cache sizes.

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

Cache Size

M
is

s
R

at
e

128 point FFT

LRU
FIFO
LFU
FFTNEW1

Figure-1. Comparison of Proposed Algorithm FFTNEW1 on L1.

2. Performance Analysis of Pair of Replacement
Algorithms on L1 and L2

The following pairs were taken into consideration. As
the performance of the replacement algorithm LRU
and LFU performance is same thus the pair with LFU
is not represented.
CASE I: Replacement algorithm used on L1 is LRU,
while on L2 the replacement algorithms LRU, FIFO,

ISSN : 0975-3397

Richa Gupta et al / International Journal on Computer Science and Engineering Vol.2(1), 2010, 92-97

95

LFU are applied to analyze the behavior of these
algorithms on L2. The results are as shown in Fig.2.
CASE II: Another analysis has been done by applying
FIFO on L1 and LRU, FIFO, and LFU on L2 under the
same criterion. The results are as shown in Fig. 3.
CASE III: In this analysis the proposed replacement
algorithm FFTNEW1 is applied on L1 followed by
LRU, LFU, and FIFO on L2. The results are as shown
in Fig. 4.

60 80 100 120 140 160 180 200
10

15

20

25

30

35

40

45

50

55

Cache Size

M
is

s
R

at
e

128 Point FFT

LRU
FIFO
LFU

Figure 2. (L1 Size: 32, L2 Varied from 64) L1-LRU

60 80 100 120 140 160 180 200
5

10

15

20

25

30

35

40

45

50

55
128 Point FFT

Cache Size

M
is

s
R

at
e

LFU
LRU
FIFO

Figure 3. (L1 Size: 32, L2 Varied from 64) L1- FIFO

3. Analysis by fixing cache size and varying FFT Size
 The comparison of the proposed algorithm
FFTNEW1 with others is as shown in Fig. 5. for
varying FFT Size Fig.6 compares the various pair of
replacement algorithms FFTNEW1 on L1 followed by
LRU, LFU, FIFO and FFTNEW2 on L2.

60 80 100 120 140 160 180 200
10

15

20

25

30

35

40

45

50

55

Cache Size

M
is

s
R

at
e

128 Point FFT

LRU
FIFO
LFU
FFTNEW2

Figure 4. (L1 Size: 32, L2 Varied from 64) L1- FFTNEW1

0 200 400 600 800 1000 1200
10

20

30

40

50

60

70

80

FFT Points

M
is

s
R

at
e

Variation in No. of Point in FFT

LRU
FIFO
LFU
FFTNEW1

Figure 5. Comparison of the replacement algorithms LRU, LFU,
FIFO with FFTNEW1 on L1 for varying FFT size

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

FFT Points

M
is

s
R

at
e

Variation in No. of Point in FFT

LRU
FIFO
LFU
FFTNEW2

Figure 6. Comparison of the proposed pair FFTNEW1 and
FFTNEW2 with other pair of replacement algorithms on L1 and L2

ISSN : 0975-3397

Richa Gupta et al / International Journal on Computer Science and Engineering Vol.2(1), 2010, 92-97

96

IV. DISCUSSION

1. Analysis of Replacement algorithms on L1

The result is as shown in Fig.1. From this figure it
can be concluded that for FFT, on L2, the performance
of LRU and LFU replacement policies are same.
It can also be realized that among existing algorithms
LRU is performing better while for larger cache size
FIFO is performing better.
Further more simulation result shows that the proposed
algorithms performance is better than existing ones as
shown in Table 1.

TABLE 1 : COMPARISION OF PROPOSED REPLACEMENT
ALGORITHM FFTNEW1 WITH OTHERS

2. Performance Analysis of Pair of Replacement

Algorithms on L1 and L2
 Our motivation is to find out pair of replacement
algorithms for L1 and L2, which is efficient for FFT
access pattern.
CASE I : In this case we have done comparison for
the pair LRU-LRU; LRU-LFU; LRU-FIFO. With the
help of Fig 2 it can be realized that the pair LRU-LRU
is performing better for lower cache size while the pair
LRU-FIFO is giving better results for higher cache
size.
CASE II : In this we have done comparison for the
pair FIFO-LRU; FIFO-LFU; FIFO-FIFO. The results
are shown in Fig. 3. The same kind of result are
obtained in this case too i.e. the pair FIFO-LRU is
performing better for lower cache size while the pair
FIFO-FIFO is giving better results for higher cache
size.
CASE III : In this the proposed algorithm FFTNEW1
is applied on L1. Here we are comparing the algorithm
FFTNEW1 on L1 followed by LRU, LFU, FIFO and
FFTNEW2 on L2. The results for these pairs are as
shown in Fig. 4.. From the result it can be realized that
the overall proposed pair FFTNEW1 on L1 and
FFTNEW2 on L2 is performing better than other pairs.
Finally the results in tabulation form of all the pairs
considered are as shown in Table 2. From theTable2 it
can be seen that overall for almost all the cache size the
proposed pair is performing better.

TABLE 2 : COMPARISION OF PROPOSED PAIR OF

ALGORITHMS WITH OTHER PAIRS

L1 = 32, L2 Varied from 64

CACHE SIZE
ALGORITHM
L1 L2

64 104 144 184 192

LRU LRU 53 42 19 15 7

FIFO LRU 52 42 19 15 7

NEWFFT1 LRU 52 42 12 10 7

LRU FIFO 54 44 12 10 7

FIFO FIFO 55 44 12 10 7

NEWFFT1 FIFO 55 42 12 10 7

LRU LFU 53 42 20 15 7

FIFO LFU 52 42 20 15 7

NEWFFT1 LFU 53 42 20 15 7

NEWFFT1 NEWFFT2 52 42 12 10 7

3. Analysis by fixing cache size and varying FFT Size
 This analysis is depicted with the help of Fig.5
which compares the performance of FFTNEW1 on L1.
From the Fig. 5 it can be realized that for very small
and very large cache size performance of all the
algorithms is almost same, while for moderate cache
size of L1 FFTNNEW1 is performing better than
others.
Fig. 6 analyzes the behavior of replacement algorithms
on L2. Here it can be analyzed that overall the
performance of the Pair FFTNEW1-FFTNEW2 is
better than other pairs considered in this paper.

REFERENCES

[1] John L Hennessy, David A Patterson, “Computer Architecture:
A Quantitative Approach” 2nd edition, 1996.

[2] Kai Hwang, “Advanced Computer Architecture: Parallelism,
Scalability, Programmability”, 1st edition, 1992.

[3] Y.Zhou, Z.Chen and K.Li, “Second Level Buffer cache
Management”, IEEE Transactions on Parallel and Distributed
Systems (TPDS), Vol.15, No. 7, pp.505-519, July 2004.
IGMOD Int’l Conf. Management of Data, pp. 297-306, May
1993.

[4] Abraham Silberschatz and Peter Baer Galvin, “Operating
System concepts”. Addison Wesley, 1997.

[5] A.Dan and D. Towsley, “An Approximate Analysis of the LRU
and FIFO Buffer Replacement Schemes”, in Proceedings of
ACM SIGMETRICS, Boulder, Colorado, United States, 1990,
pp. 143--152.

[6] M.J. Bach, “The Design of the UNIX Operating system”. Engle
wood Cliffs, Nj: Prentice –Hall, 1986.

[7] E.J. O’Neil, P.E. O’Neil and G. Weikum, “The LRU-K page
replacement algorithm for Database Disk Buffering”

L1 Cache size

 ALGO

4 44 84 124 164 184 192

LRU 9
0

62 52 41 16 15 7

FIFO 9
2

56 47 44 10 10 7

LFU 9
0

62 52 41 16 15 7

FFTNEW1 7
9

61 52 41 9 9 7

ISSN : 0975-3397

Richa Gupta et al / International Journal on Computer Science and Engineering Vol.2(1), 2010, 92-97

97

Proc.ACM SIGMOD Int’l Conf. Management of Data, pp. 297-
306, May 1993.

[8] Leonid B. Sokolinsky, “LFU-k: An Effective Buffer
Management Replacement Algorithm”. Database Systems for
Advances Applications, 9th International Conference,
DASFAA, pp.670-681, 2004.

[9] J.Robinson and M. Deevarakonda, “Data Cache Management
Using Frequency Based Replacement”, In Proc. ACM
SIGMETRICS Conf., pp. 134--142, 1990.

[10] D.Lee, J Choi, J-H Kim, S.L. Min, Y. Cho, C.S. Kim and S.H.
Noh, “ On the Existence of a spectrum of policies that
Subsumes the Least Recently Used and Least Frequently Used
Policies”, Proc. ACM SIGMENTRICS Int’l Conf.
Measurement and Modeling of computer Systems,
SIGMENTRICS Performance Evaluation Rev., vol.27, no-1,
pp. 134-143, May 1999

[11] S.Jiang and X.Zhang, “LIRS: An efficient Low Inter-Reference
Recency Set Replacement Policy to Improve Cache
Performance”, Proc. SIGMENTRICS, PP. 31-42,2002.

[12] T.Johnson and D.Shasha, “2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm”,
Proc. Very Large Databases Conf., pp 430-450, 1995.

[13] Jaafar Alghazo, Adil Akaaboune, Nazeih Botros, “SF-LRU
Cache Replacement Algorithm” Proc. in International
Workshop on Memory Technology, Design and Testing
(MTDT'04) - Volume 00,pp.19-24,2004.

[14] Michael Factor, Assaf Schuster, Gala Yadgar, “Multilevel
Cache Management Based on Application Hints”,Technion-
Computer Science Department Technical Report CS-2006.

[15] Wayne A. Wong and Jean –Loup Baer, “Modified LRU
policies for Improving second level Cache Behaviour”, High
Performance Computer Architecture (HPCA),pp-49-60, 2000

[16] Nikolas Askitis, Ranjan Sinha, "HAT-trie: a cache-conscious
trie-based data structure for strings”,ACM Intenational
Conference Proceeding Series; Vol. 244, pp 97-105,2007

[17] Aleksandar Milenovic, Milena Milenkovic, Nelson Barnes, “ A
Performance of Memory Hierarchy in Embedded Systems.”
System Theory, 2003. Proceedings of the 35th Southeastern
Symposium on Publication,16-18 March 2003, pp. 427- 431

[18] James E. Raynolds, Lenore R. Mullin, “Optimizing the Fast
Fourier Transform over memory hierarchies for embedded
digital systems: a fully in-cache algorithm. Under Review,
Journal of Computational Physics,
http://trr.albany.edu/documents/TR00004, 2006.

[19] Bevan M. Baas, “ A Low Power, High –Performance, 1024-
point FFT Processor.” Solid-State Circuits, IEEE Journal of ,
Volume: 34, March 1999 pp. 380 – 387.

[20] M.F. Sakr, C.L. Giles, S.P. Levitan, B.G. Horne, M. Maggini,
D.M. Chiarulli, “On-Line Prediction of Multiprocessor
Memory Access Patterns”, IEEE International Conference on
Volume 3, Issue , 3-6 Jun 1996 Page(s):1564 - 1569 vol.3

[21] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In Proceedings of the 40th IEEE
Symposium on Foundations of Computer Science (FOCS 99),
p.285-297. 1999

[22] Naga k. Govindaraju, Dinesh Manocha, “ Cache efficient
Numerical Algorithms using Graphics Hardware.” Parallel
Computing, v.33 n.10-11, p.663-684, November 2007

[23] Jizhu Lu, Acie Nobles, Michael Perrone, “ Accelerating FFT
Performnace using the Cell BE Processor.” IBM Research
Report RC24244, 2007.

[24] Bushra Ahsan, Mohmed Zahran, “ Managing Off-Chip
Bandwidth: A case for Bandwidth-Friendly Replacement
Policy.” in The 2nd Workshop on Managed Multi-Core
Systems (MMCS'09), held in conjunction with ASPLOS 2009.

[25] Jinwoo Suh, Eun-Gyu Kim, Stephen P. Crago, Lakshmi
Srinivas, and Methew C. French, “A Performance Analysis of
PIM, Stream Processing, and Tiled Processinh on Memory-
Intensive Signal Processing Kernals.” ISCA03, San Diego, CA,
June 2003.

ISSN : 0975-3397

