
Lilly Raamesh et al. / International Journal on Computer Science and Engineering Vol.2(1), 2009, 69-73

69

Knowledge Mining of Test Case System

Lilly Raamesh/ Research Scholar
 C.S.E Department

 Anna University Chennai
Chennai, Tamil Nadu, India
lillyraamesh@yahoo.co.in

G.V. Uma/Asst. Prof
C.S.E Department

 Anna University Chennai
Chennai, Tamil Nadu, India

Abstract — The paper analyzes knowledge mining of the test
case System. Widespread use of test case systems and explosive
growth of databases require traditional manual data analysis
to be coupled with methods for efficient computer-assisted
analysis It is very important for us to utilize this kind of
information effectively. Today, the design of test case with
enhanced reliability is a real challenge as it needs expert
designers with perfect knowledge about the whole system and
also the traditional test case generation approach faces a
challenge in test results analysis, because of the difference
between the generated test cases and the expected results. So, it
will be better if we could establish a method for automatic test
case mining based on both program structures and the
functional requirements in specifications. Mining approach can
be used to have a perfect knowledge about the whole system. In
order to improve the accuracy and efficiency of knowledge
acquisition, it establishes a knowledge mining model.

Key words – data mining, test case, test suite, knowledge mining,
clustering.

I. INTRODUCTION
Data mining sits at the interface between statistics,

computer science, artificial intelligence, machine learning,
database management and data visualization. It is the process
of identifying valid, novel, potentially useful, and ultimately
comprehensible knowledge from data that is used to help by
crucial decision-making. The search for an optimal solution
in the test case generation problem has a great computational
cost and for this reason these techniques try to obtain near
optimal solutions. As a consequence, they have attracted
growing interest from many researchers in recent years. So,
we are trying to apply mining techniques.

II. TEST CASE
A test case has components that describe an input, action

or event and an expected response, to determine if a feature
of an application is working correctly. The basic objective of
writing test cases is to validate the testing coverage of the
application. So writing test cases brings some sort of
standardization and minimizes the ad-hoc approach in
testing.

A test case is usually a single step, or occasionally a
sequence of steps, to test the correct
behaviour/functionalities, features of an application. An
expected result or expected outcome is usually given.

Additional information that may be included:

• test case ID
• test case description
• test step or order of execution number
• related requirement(s)
• depth
• test category
• author
• check boxes for whether the test is automatable and

has been automated.
Additional fields that may be included and completed

when the tests are executed:

• pass/fail
• remarks

Larger test cases may also contain prerequisite states or
steps, and descriptions.

III. TEST SUITE
A test suite is a collection of test cases that are intended

to be used to test a software program to show that it has some
specified set of behaviours. A test suite often contains
detailed instructions or goals for each collection of test cases
and information on the system configuration to be used
during testing. A group of test cases may also contain
prerequisite states or steps, and descriptions of the tests.

IV. IMPORTANCE OF TEST CASES
Writing effective test cases is a skill and that can be

achieved by some experience and in-depth study of the
application on which test cases are being written.

Designing good test cases is a complex art. The
complexity comes from three sources:

• Test cases help us discover information. Different
types of tests are more effective for different
classes of information.

• Test cases can be “good” in a variety of ways. No
test case will be good in all of them.

• People tend to create test cases according to certain
testing styles, such as domain testing or risk-based
testing. Good domain tests are different from good
risk-based tests.

ISSN : 0975-3397

Lilly Raamesh et al. / International Journal on Computer Science and Engineering Vol.2(1), 2009, 69-73

70

There are levels in which each test case will fall in order
to avoid duplication efforts.

Level 1: In this level we will write the basic test cases
from the available specification and user documentation.

Level 2: This is the practical stage in which writing test
cases depend on actual functional and system flow of the
application.

Level 3: This is the stage in which we will group some
test cases and write a test procedure. Test procedure is
nothing but a group of small test cases maximum of 10.

Level 4: Automation of the project.

So we can observe a systematic growth from no testable
item to an Automation suite.

V. SOFTWARE TESTING
Software testing is the process of executing a program in

order to find faults, thus helping developers to improve the
quality of the product when the discovered faults are solved
and reducing the cost produced by these faults. A software
test consists of a set of test cases, each of which is made up
of the input of the program, called test data, and the output
that must be obtained. As the target of software testing is to
find faults, a test is successful if an error is found.

Testing is a very important, though expensive phase in
software development and maintenance; A challenging part
of this phase entails the generation of test cases. This
generation is crucial to the success of the test, because it is
impossible to achieve a fully tested program given that the
number of test cases needed for fully testing a software
program is infinite, and a suitable design of test cases will be
able to detect a great number of faults.

VI. AUTOMATED TESTING
High-volume automated testing involves massive

numbers of tests, comparing the results

Another approach runs an arbitrarily long random
sequence of regression tests. Tests that the program has
shown it can pass one by one. Memory leaks, stack
corruption, wild pointers or other garbage that cumulates
over time finally causes failures in these long sequences.

Yet another approach attacks the program with long
sequences of activity and uses probes (tests built into the
program that log warning or failure messages in response to
unexpected conditions) to expose problems.

High-volume testing is a diverse grouping. The essence
of it is that the structure of this type of testing is designed by
a person, but the individual test cases are developed,
executed, and interpreted by the computer, which flags
suspected failures for human review. The almost complete
automation is what makes it possible to run so many tests.

The individual tests are often weak. They make up for
low power with massive numbers.

Because the tests are not handcrafted, some tests that
expose failures may not be particularly credible or

motivating. A skilled tester often works with a failure to
imagine a broader or more significant range of circumstances
under which the failure might arise, and then craft a test to
prove it.

Some high-volume test approaches yield failures that are
very hard to troubleshoot. It is easy to see that the failure
occurred in a given test, but one of the necessary conditions
that led to the failure might have been set up thousands of
tests before the one that actually failed. Building
troubleshooting support into these tests is a design challenge
that some test groups have tackled more effectively than
others.

 Testers continually learn about the software they’re
testing, the market for the product, the various ways in which
the product could fail, the weaknesses of the product
(including where problems have been found in the
application historically and which developers tend to make
which kinds of errors), and the best ways to test the software.
At the same time that they’re doing all this learning,
exploratory testers also test the software, report the problems
they find, advocate for the problems they found to be fixed,
and develop new tests based on the information they’ve
obtained so far in their learning.”

An exploratory tester might use any type of test--domain,
specification-based, stress, risk-based, any of them. The
underlying issue is not what style of testing is best but what
is most likely to reveal the information the tester is looking
for at the moment.

Exploratory testing is not purely spontaneous. The tester
might do extensive research, such as studying competitive
products, failure histories of this and analogous products,
interviewing programmers and users, reading specifications,
and working with the product.

What distinguishes skilled exploratory testing from other
approaches and from unskilled exploration, is that in the
moments of doing the testing, the person who is doing
exploratory testing well is fully engaged in the work,
learning and planning as well as running the tests. Test cases
are good to the extent that they advance the tester’s
knowledge in the direction of his information-seeking goal.
Exploratory testing is highly goal-driven, but the goal may
change quickly as the tester gains new knowledge.

Here, we prefer exploratory testing. For that we choose
mining of test cases method, Since mining of test cases
provides the complete knowledge about the total system.

VII. AUTOMATIC GENERATION OF TEST CASES
The techniques for the automatic generation of test cases

try to efficiently find a small set of cases that allow a given
adequacy criterion to be fulfilled, thus contributing to a
reduction in the cost of software testing. Model checking
techniques can be successfully employed as a test case
generation technique to generate tests from formal models.

ISSN : 0975-3397

Lilly Raamesh et al. / International Journal on Computer Science and Engineering Vol.2(1), 2009, 69-73

71

VIII. TEST SUITE REDUCTION

Test-suite reduction can provide us with a smaller set of test
cases that preserve the original coverage-often a
dramatically smaller set. One potential drawback with test-
suite reduction is that this might affect the quality of the
test-suite in terms of fault finding. Using the knowledge
mining technique, we reduced the noriginal test suite into
smaller set of test cases that preserve the original coverage.

IX. IX. DATA MINING
Data mining aims to find patterns in organizational

databases. However, most techniques in mining do not
consider knowledge of the quality of the database. In this
work, we show how to incorporate clustering and
classification mining. Real life data sets are often
interspersed with noise, making the subsequent data mining
process difficult.

The task of the classifier could be simplified by
eliminating attributes that are deemed to be redundant for
classification, as the retention of only pertinent attributes
would reduce the size of the dataset.

Using a correlation measure between attributes as a
fitness measure to replace the weaker members in the
population with newly formed chromosomes makes
improvements.

X. KNOWLEDGE MINING OF THE TEST CASE
SYSTEM

In order to evaluate the effect of knowledge mining of the
Test Case System, good or bad, we must build a relative
knowledge evaluation system. The result can objectively
indicate the value created by Test Case.

A. The accuracy of the knowledge
Reasonable knowledge discovery algorithm: This is the

main part of the Test Case data mining algorithms.

B. The understandability of knowledge
Knowledge representation and explain mechanism: It is

to evaluate the function of Test Case mining from the user’s
point of view. More easily the knowledge to be understood
by users, it plays a greater role. So a very important point is
user can understand a new knowledge, this requires the
knowledge must be explained in a simple way in the system,
such as graphics, natural language and visualization
technologies. When data mining discovered a new
knowledge, it is able to explain it by the forms of relation,
rule and concept. But user will not know the basic principles
of the find or to distinguish the value of the knowledge until
the system provides a better explanation mechanism.

C. The benefits of knowledge
• Direct benefits: the direct benefits created by

business intelligence include information becoming
merchandise, reducing the labour cost and the stock
cost.

• Indirect benefits: the indirect benefits created by
business intelligence include the accuracy of

decision-making, optimizing the supply cycle,
improving the competitive skill of employees and
fluency of business information.

D. The innovation of knowledge
The knowledge is discovered from the test case system by
applying the mining algorithm.

Figure 1. Knowledge Mining of Test Cases

Figure 1. Shows the knowledge mining system for test
cases. The test suite is given as the input to the knowledge
mining module. This module mines the test cases by attribute
selection and by applying the clustering techniques. The
output from this module is a reduced test suite.

• Attribute selection in data mining
In the KDD process, interesting patterns and useful

relationships are attained from the analysis of the input data.
To ensure that the patterns derived are as accurate as
possible, it is essential to improve the quality of the datasets
in a pre-processing stage. Most real life data sets contain a
certain amount of redundant data, which does not contribute
significantly to the formation of important relationships. This
redundancy not only increases the dimensionality of the data
set and slows down the data mining process but also affects
the subsequent classification performance. With this in mind,
data reduction aims to trim down the quantity of data that is
to be analyzed and yet produce almost similar, if not better,
results as compared to the original data. More meaningful
relationships can also be derived as the superfluous portions
are removed. Attribute selection is the process of removing
the redundant attributes that are deemed irrelevant to the data
mining task.

In addition, a smaller set of attributes also creates less
complicated patterns, which are easily comprehensible, and
even visualizable by humans.

Knowledge Mining Module

Test Suite

Attribute Selection

Clustering Techniques

Reduced Test Suite

ISSN : 0975-3397

Lilly Raamesh et al. / International Journal on Computer Science and Engineering Vol.2(1), 2009, 69-73

72

The attribute selection can be done using the stepwise
forward selection and stepwise backward elimination
techniques.

In forward selection, the search begins with an empty set
and adds attributes with increasing relevance, before
terminating at the point when the classification performance
declines.

Backward elimination starts with the complete set of
attributes and prunes the most irrelevant attribute after each
iteration.

Due to the fact that forward selection begins with an
empty set, it neglects the interaction between attributes,
which may influence the selection process. On the other
hand, backward elimination takes into account this
interaction because it begins with a complete set of
attributes.

 However, the analysis from the full set results in a
lengthy runtime and may be unfeasible to carry out if the
number of attributes is large.

• Clustering technique
 Using clustering algorithm we reduced the test

suite. Using k-means clustering we reduced the test suite.
The k-means algorithm assigns each point to the cluster
whose center (also called centroid) is nearest. The center
is the average of all the points in the cluster — that is, its
coordinates are the arithmetic mean for each dimension
separately over all the points in the cluster.

The algorithm steps are

• Choose the number of clusters, k.
• Randomly generate k clusters and determine the

cluster centers, or directly generate k random points
as cluster centers.

• Assign each point to the nearest cluster center.
• Recompute the new cluster centers.
• Repeat the two previous steps until some

convergence criterion is met (usually that the
assignment hasn't changed).

//centroid class
import java.io.*;
import java.util.*;
import java.lang.*;
import java.text.*;

public class Centroid {
public void Grouping(double[] Cordx, double[] Cordy, int
clustNumber) {
int clusterNumber = clustNumber;
double[] ClustCordX = new double[clustNumber];
double[] ClustCordY = new double[clustNumber];
this.getMeansetCentroid(Cordx, Cordy, clustNumber);
DecimalFormat dec = new DecimalFormat("0.00");
for(int i = 0;i<Cordx.length;i++) {
String result1 = dec.format(Cordx[i]);
String result2 = dec.format(Cordy[i]);

 }
for(int i = 0; i<clustNumber;i++) {
ClustCordX[i] = Cordx[i];
ClustCordY[i] = Cordy[i];
}
this.groupCordtoCluster(Cordx,Cordy,ClustCordX,ClustCor
dY);
}
public void groupCordtoCluster(double[] Cordx, double[]
Cordy, double[] ClustCordX, double[] ClustCordY) {
double temp ;
int size = Cordx.length;
int clustsize = ClustCordX.length;
int clusterComparison = clustsize;
int[] grouping = new int[size - clustsize];
double[] ClustgroupX = new double[size - clustsize];
double[] ClustgroupY = new double[size - clustsize];
int tempint = -1;
for(int i = clusterComparison; i < size;i++) {
temp = 0;
for(int j = 0;j<clustsize;j++) {
if (j == 0)
tempint++;
if(temp == 0) {
temp = Math.sqrt(Math.pow((Cordx[i]-ClustCordX[j]),2) +
Math.pow((Cordy[i]-ClustCordY[j]),2));
grouping[tempint] = j;
ClustgroupX[tempint] = Cordx[i];
ClustgroupY[tempint] = Cordy[i];
}
else if (temp > Math.sqrt(Math.pow((Cordx[i]-
ClustCordX[j]),2) + Math.pow((Cordy[i]-
ClustCordY[j]),2))) {
temp = Math.sqrt(Math.pow((Cordx[i]-ClustCordX[j]),2) +
Math.pow((Cordy[i]-ClustCordY[j]),2));
grouping[tempint] = j;
ClustgroupX[tempint] = Cordx[i];
ClustgroupY[tempint] = Cordy[i];
}
}
}
DecimalFormat dec = new DecimalFormat("0.00");
String result1, result2, result3, result4;
for(int i = 0; i<grouping.length;i++) {
 result1 = dec.format(Cordx[grouping[i]]);
result2 = dec.format(Cordy[grouping[i]]);
result3 = dec.format(ClustgroupX[i]);
result4 = dec.format(ClustgroupY[i]);
 }
}

The main advantages of this algorithm are its simplicity
and speed which allows it to run on large datasets.

XI. EXPERIMENTS
The code runs on java platform. The original number of

test cases are compared with the output of the knowledge
mining system. The graph is drawn. It shows the knowledge
mining system reduces the size of test suite.

ISSN : 0975-3397

Lilly Raamesh et al. / International Journal on Computer Science and Engineering Vol.2(1), 2009, 69-73

73

original vs reduced

12

23

34

56

75

87
92

56

10
16

29
35

43
47

56

22

0

10

20

30

40

50

60

70

80

90

100

test suite no

no
 o

f t
es

t c
as

es

original 12 23 34 56 75 87 92 56

reduced 10 16 29 35 43 47 56 22

1 2 3 4 5 6 7 8

XII. CONCLUSION AND FUTURE WORK
In this paper we present a mining approach to have better

knowledge about the test cases and about the full system. So
that better test cases can be generated, selected and are used
for testing. Because the main challenge in testing is to select
& execute test cases. The knowledge mining of test case
system has better way of mining the test suite and provides a
better set of test cases to test the system performance.

In future the system can be automated by using agents.

REFERENCES
[1] Shin Yoo and Mark Harman.”Pareto Efficient Multi-Objective Test

Case selection”, Proc. ISSTA ’07, July 9-12,London, U.K. 2007
ACM.

[2] Wes Masri, Andy Podgurski. “An empirical study of test case filtering
techniques based on exercising information flows”, IEEE transactions
on software Engineering, vol.33, No.7, July 2007.

[3] Zheng Li, Mark Harman, robert M. Hierons.”Search algorithms for
regression test case prioritization”, IEEE transactions on software
Engineering, vol.33, No.4, April 2007

[4] Dennis Jeffrey and Neelam Gupta. “Improving fault detection
capability by selectively retaining test cases during test suite
reduction” IEEE transactions on software Engineering, vol.33, No.2,
February 2007.

[5] Mao ye, boqinFeng, yao Lin 7Li Zhu. “Neural Networks Based Test
Case Selection” Proc of IEEEtransactions,2006

[6] Xu, Z.; Gao, K.; Khoshgoftaar, T.M. “Application of fuzzy expert
system in test case selection for system regression test”, Information
Reuse and Integration, Conf, 2005. IRI -2005 IEEE International
Conference on volume, Issue , 15-17 Aug. 2005 Page(s): 120 – 125

[7] T.Y. Chen, Pak-lok poon, t.h. Tse.”A choice Relation framework for
supporting Category-partition Test Case generation” IEEE
transactions on software Engineering, vol.29, No.7, July 2003.

[8] Sebastian Elbaum, Alexey G.Malishevsky, Gregg Rothermel.”Test
Case Prioritization” IEEE transactions on software Engineering,
vol.28, No.2, February 2002.

[9] Kuo –Chung Tainand Yu Lei. “A Test generation strategy for Pair-
wise testing” IEEE transactions on software Engineering, vol.28,
No.1, January 2002.

[10] Christoph C. Michael, gary McGraw, Michael A. Schatz. “
Generating software test data by Evolution”. IEEE transactions on
software Engineering, vol.27, No.12, December 2001.

[11] Gregg rothermal, Ronald H. Untch, Chengyun Chu, Mary Jean
Harrold . “Prioritizing Test Cases for regression testing”. IEEE
transactions on software Engineering, vol.27, No.10, October 2001.

[12] Scott w. Ambler, IBM “Test driven development of relational
databases”. IEEE software May/June 2007.

[13] Wei-Tek Tsai and Lian Yu, Feng Zhu, Ray Paul. “Rapid embedded
system testing using verification patterns” . IEEE software 2005.

[14] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Prioritizing test
cases for regression testing. In International Symposium on Software
Testing and Analysis, pages 102–112. ACM Press, 2000.

[15] Martina marre and Antonia Bertolino, “using spanning sets for
coverage testing”. IEEE transactions on software Engineering, vol.29,
No.11, November 2003.

[16] Khaled el-Fakih, Nina Yevtushenko and gregor v. Bochmann. IEEE
transactions on software Engineering, vol.30, No.7, July 2004.
[17]Ryszard Janicki, Emil Sekerinski.”foundations of the trac
assertion method of module interface specification”. IEEE
transactions on software Engineering, vol.27, No.7, July 2001.

ISSN : 0975-3397

