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Abstract—Any linear time-invariant continuous or discrete 
system can be represented either in  terms of characteristic 
algebraic polynomial or in the form of open-loop transfer 
function. The open-loop transfer function will consist of 
numerator polynomial and denominator polynomial. To 
understand the transient characteristics of the system, the 
denominator polynomial is analysed for its roots. Any nth order 

polynomial will have quadratics if n is even, there will be  

quadratics if n is odd. Various procedures are available for 
extracting quadratics, each having its own merits and limitations. 
In this paper, a simple-novel scheme is proposed for extracting 
quadratics for even order polynomial.  

Keywords-Coefficients - Quadratic factors - Polynomials – 
Synthetic Division – Bisection Principle -Iterations – Convergence. 

I. INTRODUCTION 
Developments of numerical methods to solve algebraic 

polynomials are very much essential because the analytical 
method fails to solve the polynomial equations of degree 
greater than four. 

Most of the methods, used to solve an algebraic polynomial 
are based on iterative techniques. Different numerical methods 
such as, Newton-Rapson [1], Muller [2], Graeffe’s root-
squaring method [2], Lehmer’s Method, Birge-Vieta [2], 
Bairstow [3],[4] and Laguerre’s method [2], etc are available to 
solve the polynomials. But, each method has some advantages 
and disadvantages over another method. Generally, the 
following aspects are considered to compare the methods: 
convergence or divergence, rate of convergence, applicability 
of the method, computational complexity of the method, and 
amount of pre-calculations needed before application of the 
method. 

The iterative algorithms for obtaining the roots of an 
equation are essentially begin with the initial approximation; 
the algorithms then provide a sequence of iterates converging 
to a root in the limit. This initial approximation should be 
sufficiently close to one of the roots; otherwise the iterates 
may diverge. Hence, some idea about the location of root is 
important [6-20]. 

From the fundamental theorem of algebra [17], it is known 
that every polynomial of degree n has exactly n roots in the 
complex plane. Furthermore, if the coefficients of the 
polynomial are real, then complex roots appear in conjugate 
pairs. Complex roots can be easily determined closed form 
formula [2] from the quadratic factors of the polynomial. 
Bairstow method [3],[4], extracts quadratics from the 
polynomial, thus solves it. The present work follows the same 
direction but involves simple procedure to extract initial 
quadratic approximation. Since the initial approximation is 
found closer to the actual quadratic, then the procedure does a 
simple iterative process to refine this approximation unlike the 
high computational iterative process involved in Bairstow 
method. 

II. PPROPOSED SCHEME 
Consider a monic polynomial,  

Pn(x) = anxn+an-1xn-1+ …+a1x+a0. ai>0. (1) 
where n is even degree and ais’ are real coefficients with an=1. 

The roots of the polynomial equation can be determined by 
extracting a quadratic factor from the polynomial. The roots of 
a quadratic equation can be determined using a known closed 
form formula [1]. 

Let x2+px+q be a factor of equation (1). If equation (1) is 
divided by the factor x2+px+q then we obtain a polynomial  
Qn-2(x) of degree (n-2) and a remainder R(x) = (e1x+e2) of 
degree one, where e1 and e2 are independent of x. Thus the 
polynomial Pn(x) can be written as 

Pn(x) = (x2+px+q) Qn-2(x) + R(x).  (2) 
 where Qn-2(x) = bnxn-2+bn-1xn-3+…… +b2; bn=1. (3) 

The values of e1 and e2 depend on p and q. If x2+px+q 
is a factor of Pn(x), then e1 and e2 should be zero. Thus our aim 
is to determine the values of p and q such that e1=0 and e2=0. 
 
2.1 New Scheme for Initial Quadratic Factor 
 

Without the loss of generality and for simplicity, we 
introduce a heuristic strategy to extract the initial approximate 
quadratic factor by a triangle formation from the coefficients 
of the polynomial an, an-1, an-2… a1, a0 as shown in the Table I. 

Every element in each row is determined by 
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aij = a(i-1)(j) + a(i-1)(j-1). 
 : the row index i =  1, …. n 
 : the coefficient index j = n, n-1, …,0. (4) 

The 0th row of the triangle is formed with the 
coefficients of the polynomial. The each element in the first 
row of the triangle is formed as 
 a1j = a0j + a0(j-i)       : j = n, n-1,…0. 

This reduces the degree of the polynomial to (n-1). 
The elements in the second row are determined as 

a2j = a1j + a1(j-1)      : j = n-1, n-2,…0. 
Similarly, the elements in the third row are determined as 

a3j = a2j + a2(j-1)      : j = n-2, n-3,…0. 
And so on, until j is reduced to zero. 

The initial approximate quadratic factor is extracted 
at the (n-2)th row. i.e. the elements a(n-2)2, a(n-2)1 and a(n-2)0 form 
the coefficients of the quadratic factor as 
 D(x) = a2x2+a1x+a0.   (5) 
The above equation (5) is scaled by a2 as 
         = x2+(a1/ a2)x+ (a0/ a2). 
  

Let the initial approximate quadratic factor be 
D(x) = x2+p0x+q.    (6) 

        where p0 = (a1/ a2) and q0=(a0/ a2). 
 
2.1.1) Algorithm for Initial Quadratic Factor 

 The computation involves only two rows. The 
second row is determined from the first row and the first row 
is updated with the second row. We deduce the pseudocode of 
the algorithm for this scheme as: 
Algorithm Init_Quad(Pn(x),n) 
 /*The algorithm extracts the initial approximate quadratic 
factor from the given polynomial Pn(x)=anxn + an-1xn-1 + an-2xn-2 

+…+a1x+a0 , where n is the even degree and an, an-1, an-2, 

 …,a1 and a0 are positive coefficients.*/ 
 for i = 0 to n-2 do 

for j = n-i to 0 do  
  Compute bj = aj + aj-1; 
    aj = bj; 
 end for 
end for 
Compute p = a1/ a2 ; 

 q = a0/ a2; 
Write p, q; 
End Init_Quad. 

The algorithm performs n(n+1)/2 additions only. The 
procedure is terminated at (n-2)th row to obtain the three 
elements to form the initial quadratic, thus saves three addition 
operations. Therefore, the total addition operations performed 
by this procedure is ((n(n+1)/2)-3); assume addition operation 
takes unit time. 

 
2.2 Quadratic Synthetic Division 
 
 The division of the polynomial equation (1) by the 
initial quadratic factor equation (6) is carried out by quadratic 
synthetic division scheme as shown in the Table II. 

Hence the quotient Qn-2(x) = bnxn-2+bn-1xn-3+……+b2 
and the remainder R(x)=b1x+b0 are determined from the Table 
II. The remainder coefficients e1=b1 and e2=b0 are errors 
caused due to the approximation of p0 and q0 values. 

 
2.3 Error Correction and Convergence 
 

Let (pt, qt) be the true values of p and q and Δp and 
Δq the corrections to p and q. 

Then pt = p + Δp and qt = q+ Δq.  
 Let Δp = e1/n  and  Δq = e2/n.  (7) 
Therefore, the improved values of p and q are p + Δp 

and q+ Δq.  
Then if p0, q0 be the initial values of p and q then the 

improved values are p1= p0+ Δp and q1= q0+ Δq. 
Once p1and q1 are evaluated, the synthetic division is 

repeated, and the next improved p2 and q2 are determined from 
the relation p2 = p1+ Δp and q2 = q1+ Δq. 

In general, 
  pk+1=pk+ Δp 
  qk+1=qk+ Δq.   (8) 

The values of Δp and Δq are determined at p=pk and 
q=qk. 

Any sign changes from pk to pk+1 or qk to qk+1 is 
observed in each iteration and then bisection technique is 
employed to enhance the convergence rate. 

The midpoint is found to update pk+1 and qk+1 values 
as 
 pk+1= (pk+1+ pk)/2 
 qk+1= (qk+1+qk)/2.         (9) 

The repetition is to be terminated when p and q have 
been obtained to the desired accuracy. 

The convergence rate for p and q are determined 
Table I: Extracting the initial  approximate quadratic factor 

n a0n  a0(n-1)  a0(n-2)  a0(n-3) …  a01  a00 
  +  +  +     +  
n-1  a1(n-1)  a1(n-2)  a1(n-3)  … a11  a10  
   +  +     +   
n-2   a2(n-2)  a2(n-3)     a20   
:   :  :   …  :   
:    :  :  … :    
2    a(n-2)2  a(n-2)1  a(n-2)0     
     +  +      
1     a(n-1)1  a(n-1)0      
      +       

0      an0 
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from equation (8) as  
 Δpk = pk+1- pk 

Δqk = qk+1- qk 
       Let  pk+1 = g(pk) , k = 0,1,2,… 
       qk+1 = g(qk) , k = 0,1,2,… 
      Let g(pk) = pk + (e1/n) 
            g(qk) = qk + (e1/n) 
Therefore g'(pk) = g'(qk) = 1. 

Hence, the scheme converges linearly. 
 
2.4 The Deflated Polynomial 
 
The polynomial 
Qn-2(x) = Pn(x) / (x2+px+q)  
            = bnxn-2+bn-1xn-3+……+b3x+b2   ; bn=1. (10)                             
Qn-2(x) is called the deflated polynomial. The next quadratic 
factor can be obtained in the similar process from the deflated 
polynomial. 
 
2.5 Algorithm for Extracting all Quadratics 
 

The algorithm which extracts a quadratic factor from 
a polynomial of degree n and also determines the deflated 
polynomial is proposed as: 

 
Algorithm Quad_Poly(Pn(x),n) 
/* Extracts a quadratic factor x2+px+q from a polynomial    
Pn(x)=anxn+an-1xn-1+…+a1x+a0 of degree n and determines the 
deflated polynomial Qn-2(x)=bnxn-2+bn-1xn-3+… + b3x +b2.*/ 
Read n, an , an-1,an-2, …, a1,a0;  
//  The degree and Coefficients 
Set ξ = 10-7; // Error Tolerance 
// Extract the Initial Quadratic Factor 
1. Call Init_Quad(Pn(x),n); 
 /* Polynomial division by synthetic scheme and bisection 
technique for convergence.*/ 
2. for k=(n-1) to 0 do 
 Compute bk=ak-pbk-1-qbk-2; 
    end for 
   Compute Δp = b1/n; 
     Δq = b0/n; 
   Compute pnew = p + Δp ; 
     qnew = q + Δq; 
   if (sign(p) ≠ sign(pnew) or  
        sign(q) ≠ sign(qnew)) then 

Compute pnew = ( pnew + p ) / 2 ; 
           qnew = ( qnew + q ) / 2 ; 
   end if 
   if ( ( | pnew – p| > ξ ) or ( | qnew – q| > ξ ) ) then 

 
 

Set p = pnew ; 
                    q = qnew ; 
 goto 2; 
   else 

Print “The values of p and q are” , pnew, qnew; 
Print “The coefficients of the deflated polynomial 
are”, bn, bn-1, ……, b2; 

   end if 
 3. Set n=n-2; 
End Quad_Poly. 
 
2.6 Generalised Algorithm for Solving Polynomial of any 

degree 
 

The proposed procedure satisfies the following cases 
also: 
Case 1: Odd degree 

If the n is odd, then Pn(x) is multiplied by the single 
factor (x+1) to convert it into even degree polynomial. 
Multiplying the equation(1) with (x+1), we get 
(x+1)Pn(x)=an+1xn+1+anxn+an-1xn-1+…+a1x+a0  (11) 

The algorithm is written as 
Algorithm Even_Poly(Pn(x),n) 
for i=0 to n do 
 Set c[i]=a[i]; 
end for 
for i=0 to n do 

Compute a[i+1] = a[i+1]+c[i]; 
end for 
Set n=n+1; 
End Even_Poly 
 
Case 2: Negative Coefficients 

If any coefficient ai (0 ≤ i ≤ n) is found negative, then 
the following procedure is to be followed before starting the 
step 1 in the algorithm Quad_Poly. 
Let  S = [ an+an-1+an-2….a1] 
where S is the sum the coefficients except a0. 
If a0 ≥ S, then inverse the polynomial. 
Now the equation (1) becomes 
Pn(1/x) =an(1/x)n+1+an-1(1/x)n-1  +…..+a0. (12)                   
            = a0xn+ a1xn-1+…..+an-1x+an.   (13) 
Scale the equation (13) by a0 to convert it into monic 
polynomial as 
         = xn +(a1/a0)xn-1+…+(an-1/ a0)x+(an/ a0).  (14)    
The equation (14) can be easily determined from equation (12) 
by the following procedure. 

Table II:  Quadratic Synthetic Division 
 
 1 an-1 an-2 … … ak … … a1 a0  

-p0 

  -p0 -p0bn-1 … … -p0bk-1 … … -p0b2   

-q0 
   -q0 

 … … -q0bk-2 … … -q0b3 
 

-q0b2 
  

 
 1 bn-1 bn-2 … … bk … … b1 b0  
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The equation (14) can be easily determined from 

equation (12) by the following procedure. 
Algorithm Inverse_Poly(Pn(x),n) 
/*This algorithm inverses the polynomial and scale it to 
convert into monic polynomial*/ 
for i=0 to n do 

Set b[n-i]=a[i]; 
end for 
for i= 0 to n do 

Compute a[i]=b[i]/b[n]; 
end for 
End Inverse_Poly 
 

Thus we develop an algorithm which extracts all 
quadratics of polynomial of any degree with real coefficients 
as 
Algorithm Solve_Poly(Pn(x),n) 
/*Solves a polynomial Pn(x) = anxn + an-1xn-1  + an-2xn-2 

+…+a1x+a0 of any degree n by extracting (n/2)  quadratic 
factors x2+px+q.*/ 
Read n, an, an-1, an-2 … a1, a0;  
// The degree and Coefficients 
Set ξ = 10-7;  // Error Tolerance 
if n is odd then 
 Call Even_Poly(Pn(x),n); 
end if 
if ai<0 (0 ≤ i ≤ n) then 
 Call Inverse_Poly(Pn(x),n); 
end if 
while(n>2) 

Call Quad_Poly(Pn(x),n); 
End Solve_Poly.  
 This procedure is simple and straightforward to be 
implemented using ‘C’ language. 
 

III ILLUSTRATIONS 
 
3.1 Illustration 1 
Consider the given polynomial to be: 

P(x) = x8+9x7+39x6+103x5+183x4+ 
227x3+205x2+133x+60.  (15) 

The degree of the above polynomial is even and all 
the coefficients are positive. All the quadratics are extracted,  

 

thus the polynomial is solved using the proposed algorithm 
Quad_Poly(Pn(x),n) as explained in 2.5. The results are 
tabulated in the Table III. The execution time is measured for 
solving the polynomial (15) in terms of milliseconds. 

 
3.2  Illustration 2 
Consider the polynomial 

P(x) = x4+6.2x3+13.915x2+13.33x+4.62 (16) 
The equation has even degree and positive fractional 

coefficients. The polynomial is solved using the algorithm 2.5 
Quad_Poly and the results are tabulated in Table IV. 

The two quadratic factors and four cluster roots are 
obtained in 0.156 milliseconds using the algorithm 2.5. 
 
3.3 Illustration 3 
Consider the polynomial 

P(x) = x4+4x3-7x2-22x+24   (17) 
The order of the polynomial equation (17) is even and 

it has negative coefficients. It is found that the coefficient a0 is 
greater than the sum of other coefficients i.e. (a4+a3+a2+a1). In 
this case, the algorithm 2.6 Inverse_Poly is applied to solve 
this above polynomial (17). And the results are tabulated in 
the Table V. 

The polynomial (17) is inverted and the roots of the 
inverted extracted quadratics are obtained. The roots are again 
inverted to get the actual roots. This task is accomplished in 
0.171milliseconds. 

 
VI DISCUSSIONS 

 
The observations made from the illustrations 3.1, 3.2 

and 3.3 are discussed here. The execution times measured in 
illustrations 3.1 and 3.2 are comparable with Bairstow method. 
The initial approximate quadratic is obtained by the proposed 
scheme from the original given polynomial. Then quadratic 
synthetic division is carried out and error correction is applied 
to refine the original guess quadratic. Thus, the actual 
quadratic factor and the deflated polynomial are derived. 
Again the initial approximate quadratic is obtained from the 
deflated polynomial and the process is continued until all the 
quadratics are extracted. This guarantees that the method 
converges on accurate results. The bisection technique 
deployed during error correction process enhances the 
 

Table III:      Solving the Polynomial equation (15) 

Polynomial P(x) Initial Approximate Quadratic 
Da(x) 

Deflated Polynomial 
Q(x) 

Extracted 
Quadratic 

Factor D(x) 
Roots of D(x) Total Exe.Time (ms) 

 
x8+9x7+39x6+103x5+183x4+227

x3+205x2+133x+60 

 
x2+1.456931x+1.693525 

 
x6+6x5+17x4+28x3+31x2

+22x+15 

 
x2+3x+4 

 
-1.5 ± 

j1.322878 

 x2+1.437037x+1.548148 x4+4x3+6x2+4x+5 x2+2x+3 -1 ± j1.414214 

  
x2+1.333333x+1.266667 x2+4x+5 x2+1 0 ± j1 

   x2+4x+5 -2 ± j2 

0.307 
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convergence rate. But, even though Bairstow method has high 
convergence rate, in some cases it is observed that it may 
converge on inaccurate results. 

In illustration 3.3, it is found that the polynomial has 
negative coefficients. Then the coefficient value a0 i.e. 24 is 
compared with the sum of other coefficients which is -24. i.e. 
a0 is not lesser than the sum of remaining coefficients. Thus, 
the polynomial is inverted and the proposed scheme is applied. 
In order to get the actual roots, the obtained roots are again 
inverted. 
 

V CONCLUSION 
 

The proposed method is reliable in finding both real 
and complex roots of a given polynomial up to the accuracy of 
10-7. Since the proposed method extracts initial approximate 
quadratic from the given polynomial itself that enhances the 
quadratic synthetic division to converge on accurate results. 
The method is also suitable for odd degree polynomials and 
polynomials having negative coefficients. In case of odd 
degree polynomial, the given polynomial is multiplied with 
(x+1) factor to convert it in to even degree, and then the 
proposed scheme is applied. Finally, the root x = -1 must be 
eliminated from the obtained list of roots. For the ill-
conditioned polynomial [18],[19] such as polynomial having 
very large coefficients, it is suggested that the polynomial can 
be inverted and scaled, and then the proposed method can be 
used to extract all the quadratics. The illustrative examples 
show that the method is very simple to be implemented using 
any programming language. 
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