
Mydhili K Nair et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 248-253

248

Generic Web Services: A Step Towards Green
Computing

Mydhili K Nair
Dept.of Information Science & Engg.
M S Ramaiah Institute of Technology

Bangalore, India
mydhili.nair@gmail.com

Dr. V. Gopalakrishna
Integra Micro Systems

Bangalore, India
vgopi@integramicro.com

Abstract—Software as a Service (SaaS) is a buzzword especially
in the realm of Cloud Computing. We can reduce the number of
applications deployed on the data-centers by using similar
applications hosted by the SaaS providers. Thus, “reusability” of
a SaaS is a key-point of focus promoting the same code-base of an
application serving multiple clients. This reduces the need for
more storage space and computational power in the data-centers
thus aligning the SaaS architecture to a “greener” computing
paradigm. In this paper, we provide a prototype implementation
framework, which uses the same web service to Register and
Report the results of a backend Network Monitoring (NM) as well
as Weather Monitoring application. We have designed and
developed this “Generic Web Services Framework” as well as both
the backend applications. The NM application is done using both
Mobile Agents and SNMP and the WM application is
implemented using Temperature Sensors. This paper aims to give
a prototype implementation as proof of SaaS maturity levels of a
generic / reusable web service thus orienting towards green
computing.

Keywords-Cloud Computing; Network Monitoring ; Web
Services; Green Computing;

I. INTRODUCTION

Software as a Service (SaaS) is a model in which a service
provider offers an Internet hosted version of their application
with the hosting done either in house through a dedicated
server or at hosting space managed by a third party. The
customers of the service vendor access this application over
Internet and pays for its utilization on a per-use, per-product or
subscription-basis [7]. An example is a small handicraft
business in a remote village in India, which immediately has a
global presence and immediate access to the global market by
just listing its products on a well-known portal such as e-Bay!

Thus, SaaS enabled by the amalgam of corporate intranets

and the Internet proves to have a great potential to impact our
everyday lives. The most common implementation of a SaaS
offered over the Internet is as Web Services where ‘Services’
are an implementation of the functionality of a business
enterprise, which can be utilized by users of different
applications. The logic of the service is hidden from the
consumers of the service. In simple terms, services are the
end-points of a connection [8]. ‘Web Services(WS)’ are the set
of protocols by which these end connections are made by

allowing the services to be published, discovered and used in a
technology neutral, standard form.

The five key benefits of Web Services Based SaaS are [2]:

• Save money
• Save time
• Focus on business needs of the software rather than
 on deployment and maintenance infrastructure.
• Gain immediate access to the latest innovations to the

 software offered as a service.
• Join a global community using the software as a
 service thus gaining instant benchmarking data.

Therefore, we leverage on the concept that SaaS is a
business model, which is proven and will continue to have a
global impact It is certainly not one of those transient
disruptive technologies that comes and goes is here to stay
through the coming years.

Hence, in this paper, we focus on optimizing SaaS design,

deployment and maintenance by using generic / reusable Web
Services(WS), thus aligning business architectures towards
energy efficient green computing as well as adding a sixth
key benefit to SaaS described above, namely,

• Save Energy by reducing storage, computational and
 processing power at the servers where these “green”
 services are deployed.

 In this paper, we depict here the use of ‘Generic’ Web

Services at the business enterprise, which are not tightly
coupled / tied down to any specific application. This enables
multiple applications to ‘use’ / ‘consume’ these Web Services.
We also present implementation results of usage of two such
Generic WS by two completely different backend monitoring
legacy applications, namely Network Monitoring and Weather
(specifically Temperature) Monitoring.

The structure of the paper is as follows. Section 2 describes
the overall architecture of our Green Computing Framework.
as well as highlights the design of the Generic Web Services.
Section 3 presents the implementation results while Section 4
focuses on the conclusion and scope of future enhancements to
our Generic Web Services Framework.

ISSN : 0975-3397

Mydhili K Nair et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 248-253

249

II. OVERALL ARCHITECTURE .

 Weather
Monitoring

using sensors
(SunSpot)

Network
Monitoring
Backend

Application

Network
Monitoring

Daemon

Temp
Monitoring

Daemon

Registration
WSClient

Task
Scheduling
WSClient

Reporting
WSClient

Result
Reporting

Web Service

Task
Scheduling

Web Service

Registration
Web Service

GUI for
Network

Monitoring

GUI for
Weather

Monitoring

AGENT tightly coupled with
the Monitoring Backend

ENTERPRISE hosting
the Web Services

Figure 1. Overall Deployment Diagram of Generic SaaS Framework

The generic / reusable web services green computing

framework, we describe in this paper, consists of three parts:

a) The Backend Monitoring Application
b) Agent Daemon (tightly coupled with backend app)
c) The Enterprise with the Web Services

The shaded blocks shown in Figure 1 are the reusable web

services for both the backend applications, namely:

• Computer Network Monitoring(NM)
• Weather Monitoring(WM)

A. Backend Monitoring Applications

‘Network Monitoring’ (NM) application was developed by
us in-house[9]. It uses SNMP (Simple Network Management
Protocol) as well as Mobile Agents to communicate between
the manager and its managed nodes. It adheres to the
principles of Network Management, namely, FCAPS (Fault,
Configuration, Accounting, Performance, and Security) and is
a fully functional implementation. Mobile Agents are small
pieces of software that migrate from host to host in a network.
In our case, they carry instructions to from the manager node
to interact with the SNMP MIB (Management Information
Base) at the managed nodes.

‘Weather Monitoring’(WM) application is an on-going

work being developed by us for this research work. At this
stage, we have implemented the Temperature Monitoring
aspect of monitoring the weather, using temperature sensors
called Sun-Spots given for academic research from Sun
Microsystems. In this paper we show the implementation
results of testing it to communicate with the Reusable
Enterprise Web Services. A Sun-Spot kit consists of two free-
range devices and one base-station. The free-range devices are
those in which we can embed code to sense the temperature.
We have used J2ME(Java 2 Mobile Edition) API to embed
temperature Midlets into the free range devices. It
communicates using Radiogram Protocol with the Base-
Station device connected to a computer linked to the Internet.

B. Software Agent Daemon
Each of the aforementioned backend monitoring

applications has a Software Agent tightly coupled with its
implementation. They act as a glue[10] communicating with
the Enterprise as well as the backend application. In our work
we have two agents, both implemented as a daemon processes.

• The Network Monitoring Agent[10]
• The Temperature Monitoring Agent.

Java Beans

Interf aces with the backend NM and WM APIs

Working
Memoy Rule Base

Pattern
Matcher

Rule 1
Rule 1

Rule 1Fact1

 Agenda

Execution
Engine

Drool Rule Engine

Interf aces with
Enterprise to

register,
and report

results back to
Enterprise.

Thus, interf aces
with the Generic

Reusable
Registration

and Reporting
Web Serv ices

Registration
Manager

Licensing
Manager

Configuration
Manager

Enterprise
Communicator
(To get tasks if any

and report results)

Heart Beat Engine of the Agent

Figure 2. Architecture of the Agent of Generic SaaS Framework

As shown in Figure 2, the general design of our Software

Agents has four parts, namely,

• Registration Manager
• Licensing Manager
• Configuration Manager
• Enterprise Communicator

The Registration Manager and Licensing Manager

invokes the Enterprise Generic Registration and Licensing
WS, to register itself. with a Device ID which is unique to the
entire enterprise database.

The Algorithm described in Figure 3 below, clearly

indicates the steps taken by the Agent’s Registration and
Licensing Manager to ensure that only a valid Agent is
allowed to access and utilize the Services offered by the
Enterprise. Each Agent comes with a contract expiry date
within which it can access the Enterprise SaaS. The validity
of the Agent is determined by this date which also has a grace
period, within which the contract needs to be renewed of it has
expired. These details are checked and maintained by the
Configuration Manager.

The Agent interacts with the Drools Rule Engine if its

Contract Expiry Date is expired, to check the Rule Base and
fire the appropriate action. A Rule Engine is made up of rules

ISSN : 0975-3397

Mydhili K Nair et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 248-253

250

Figure 3. Algorithm for the Agent Registration and Licensing for SaaS
.

which are discrete , as each of them applies to some subset of
a potential problem, which needs to be solved.

Figure 4. ‘License.drl’, Sample Rule Base of Java Based Drools[10]

As depicted in Figure 2, the Drools Rule Engine has a
Working Memory of Facts and a Rule Knowledge Base of
Rules. Facts are objects (Java Beans) from your application
that you insert into the working memory, which the rule
engine can access. A sample ‘License.drl’ Rule Base is
depicted in Figure 4. The interaction between the Agent and
the Rule Engine is through Java Beans. Therefore, in our case,
the LicenseBean is a Fact. The Facts needs to be inserted into
the working memory of the Rule Engine, before any of the
rules are fired [10]. We use the JBoss Java based Drools Rule
Engine Version 4.0. We store the rules in a .drl file, a sample
of which is given in Figure 4.

C. The Enterprise Web Serivces

The Enterprise offers three Web Services all of which is a

SaaS. Out of this two of them are the Generic Web Services,
which we focus in this paper. The Web Services are:

• Registration and Licensing Web Service
• Result Reporting Web Service
• Task Scheduling Web Service

Daemon

(here NM or WM)

 :RegistrationService :DataRetrieverFactory : DataRetriever :LicenseManagement

GetContractStatus()

GenerateNewActiv ationCode

AddorUpdateAssets()

IsAuthentic()

GetAgentDataRetriev er()

CheckAuthentication()

IsAGENTPresent()

My SqlDataRetriev er()

ContractStatus

NewActiv ationCode

[isAgentPresent=f alse]

<<destroy >>

RegisterSy stem

<<create>>

AgentNotFound
Exception

Licensing Exception

[isAuthentic=f alse]

alt Is Authentic

 :RegistrationStatus

alt Agent Not Present

RegisterSy stem()
<<create>>

Figure 5. Sequence Diagram of the Generic Registration and

Licensing Web Serivce

The Enterprise Communicator component of the Software
Agents, depicted in Figure 2 above, have the client

package com.agent.license;
import com.agent.license.LicenseChecker;
import com.agent.license.LicenseAction;

rule "Contract Expired"
 when
 lc:LicenseChecker(status==
 LicenseChecker.EXPIRED)
 la : LicenseAction()
 then
 lc.setMessage("Contract Period Expired, no
 grace period, set new license");
 // Call the relevant action for the rule
 la.licenseExpiry();
 lc.setStatus(LicenseChecker.GRACEPERIOD);

 /* Notifying the Rule Engine modified Facts, so that
 it can be re-process */
 update(lc);
end
rule "License Grace Period"
 when
 lc:LicenseChecker(status==
 LicenseChecker. GRACEPERIOD)
 la : LicenseAction()
 then
 lc.setMessage("Contract Period Expired, but
 within grace period");
 // Call the relevant action for the rule
 la.licenseGracePeriod();
end

Var DevID: Agent’s Device ID given by the
 Configuration Manager.
 ContractDate: License Contract Expiry Date

Begin
 # Checks if the Agent is valid, registered with Enterprise.
 If DevID of Agent = DevID recorded at Enterprise
 # Check if the Contract has not expired

 If not ContractDate
 --- Implementation ----
 # Allow the agent to use the Enterprise
 # Update Enterprise with the new Asset details if any
 # Generates new activation code and records the same
 at the Enterprise to prevent fraud

 else
 ---Implementation of Rule Engine. Refer Figure 4.---

 # Control transfers to the Drools Rule Engine. This engine
 checks if the license is within the grace period of the
 contract. If so, it allows the Agent to interact with the
 Enterprise. If not, the Agent is brought down.
Checks the validity of the Agent

else if DevID of Agent != DevID recorded at Enterprise
Bring the Agent down, not allowing it to access Enterprise.

End

ISSN : 0975-3397

Mydhili K Nair et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 248-253

251

components of these SOAP (Simple Object Access Protocol)
based Web Services deployed in it. This is the one, which
enables the Software Agent to communicate with the
Enterprise Web Services, through SOAP over HTTP.

As shown in Figure 1, the Result Reporting and

Registration Web Service are reusable because of their generic
design. In our work, we have used these same WSs for both
the Network and Weather Monitoring backend applications.
The NM and WM Agent registers themselves with the
Enterprise using their respective Registration Managers,
depicted in Figure 2. The Agent’s Registration Manager in
turn invokes the Registration and Licensing Web Service,
whose sequence diagram of execution is given below in Fig 5.

In Figure 5, we have shown the sequence of interaction that

takes place for the Registration and Licensing Web Service.
We use a combination of factory method and abstract factory
design pattern to decide which backend application needs to
be invoked. Due to the use of these generic design patterns,
the Web Service is reusable. Any backend monitoring
application that needs an online monitoring component can
interact with these generic Web Services.

The detailed algorithm of the Agent interacting with this

service is given in Figure 3. We have tested this framework
with two backend applications Network Monitoring as well as
Weather Monitoring, specifically Temperature Monitoring
Applications. Both these applications are Software Agent-
Based and it is the Agent, which acts as a bridge between the
legacy / backend application and the Generic Web Services.
The execution results are shown in Section 3.

III. EXECUTION RESULTS

The following figures depict the execution results of using

the Registration and Licensing SOAP Based Web Services for
both the Online Network and Weather Monitoring
Applications. Figure 6 shows the interface to register a
Network Monitoring Software Agent, while Figure 7 depicts
the registration and licensing GUI for a Weather Monitoring
Agent. It is evident from these figures that the Unique Device
ID, distinguishing the Software Agent of the backend
application are different implying that it is two different
Agents we are trying to register. Also note from these figures
that the Services offered by both the Agents are different.

The NM Agent offers

• Account Monitoring Services
• Performance Monitoring Services
• Fault Monitoring Services

while the WM Agent offers

• Pressure Monitoring Services
• Temperature Monitoring Services
• Humidity Monitoring Services

Agent Device
ID for NMS

 Account Monitoring

 Performance Monitorin

 Fault Monitoring

Figure 6. Online Network Monitoring Licensing GUI

Agent Device
ID for WMS

 Pressure Monitoring

 Temperature Monitoring

 Humidity Monitoring

Figure 7. Online Weather Monitoring Licensing GUI

Thus, when the Software Agent, which is tightly coupled

with the backend application, registers itself with the
Enterprise, it makes available to the user, the services offered
by the backend application. With these results, we prove that
the Registration and Licensing Process is Generic,
independent of the backend application. Any other such legacy
applications, which needs to be scaled up for online
monitoring over the internet, could re-use these Web Services.
The Services offered by the backend application is thus
available to the end user of the online monitoring application
depending on the licensing agreement and payment terms of
using these Softwares as a Service(SaaS).

ISSN : 0975-3397

Mydhili K Nair et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 248-253

252

Figure 8. TCP Connection Table Using Generic Reporting Web Serivce

Figure 10. WSDL Created for the Generic Reporting Web Service

Figure 9. TCP Connection Table of the Backend Application

Figure 11. XSD Created for the Generic Reporting Web Service

Figure 8 and Figure 9 execution results shows that the
backend network monitoring desktop application in indeed
scaled up for online monitoring over the Internet. The results
retrieved for a TCP Connection Table of a node is exactly the
same when retrieved by the desktop application (Figure 9) and

<definitions
targetNamespace="http://ResultReporter.WebService/"
name="ResultReportingServiceProviderService"
xmlns:tns="http://ResultReporter.WebService/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<types>
<xsd:schema>
<xsd:importnamespace="http://ResultReporter.WebService/"schemaLocatio
n="ResultReportingServiceProviderService_schema.xsd"/>
</xsd:schema>
</types>
<message name="ReportResult">
<part name="parameters" element="tns:ReportResult"/>
</message>
<message name="ReportResultResponse">
<part name="parameters"element="tns:ReportResultResponse"/>
</message>
<portType name="ResultReportingServiceProvider">
<operation name="ReportResult">
<input message="tns:ReportResult"/>
<output message="tns:ReportResultResponse"/>
</operation>
</portType>
<binding name="ResultReportingServiceProviderPortBinding"
type="tns:ResultReportingServiceProvider">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>
<operation name="ReportResult">
<soap:operation soapAction=""/>
<input><soap:body use="literal"/></input>
<output><soap:body use="literal"/></output>
</operation>
</binding>
<service name="ResultReportingServiceProviderService">
<port name="ResultReportingServiceProviderPort"
binding="tns:ResultReportingServiceProviderPortBinding">
<soap:address
location="http://localhost:8060/ReportingResultNM/ReportingResu
ltNMServicePortTypeBndPort"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
</port>
</service>
</definitions>

<xs:schema version="1.0"
targetNamespace="http://ResultReporter.WebService/"
xmlns:tns="http://ResultReporter.WebService/"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="ReportResult" type="tns:ReportResult"/>
<xs:element name="ReportResultResponse"
type="tns:ReportResultResponse"/>
<xs:complexType name="ReportResult">
<xs:sequence>
<xs:element name="results" type="tns:resultDetails" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="resultDetails">
 <xs:sequence>
 <xs:element name="AssetId" type="xs:string" minOccurs="0"/>
 <xs:element name="ResultValue" type="xs:string" minOccurs="0"/>
 <xs:element name="ScheduledTaskId" type="xs:int"/>
 <xs:element name="DeviceInfo" type="tns:deviceIdentification"
minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="deviceIdentification">
<xs:sequence>
<xs:element name="AuthenticationToken" type="xs:string"
minOccurs="0"/>
<xs:element name="DeviceIdentifier" type="xs:string"
minOccurs="0"/>
<xs:element name="CreateLocalTimeGMT" type="xs:dateTime"
minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="ReportResultResponse">
<xs:sequence>
<xs:element name="return" type="xs:boolean" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

ISSN : 0975-3397

Mydhili K Nair et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 248-253

253

when retrieved by the Enterprise Reporting Web Service
(Figure 8). Figure 10 shows the WSDL (Web Services
Definition Language) created for the Reporting Web Service,
while Figure 11 shows its XSD (XML Schema Definition).
The detailed attributes and elements of the messages
‘ReportResult’ and ‘ReportResultResponse’ in the WSDL are
defined in the XSD as shown. Thus, the Java Objects created
and filled by the Software Agents are converted into XML
form, put into SOAP envelopes, and exchanged between the
Enterprise and the Agent through SOAP over HTTP. This
creates the overhead of having to marshal and unmarshall the
SOAP Messages, but provides a standard meta-data in the
form of XML to exchange information. This makes the
framework very generic, meaning any kind of data pertaining
to diverse backend application can be exchanged as finally it
is sent in the form of XML.

IV. CONCLUSION AND FUTURE SCOPE

The initial phase of this work was demonstrated in SUN
Tech Days held at Hyderabad in February 2009. There we
demonstrated the use of the Enterprise-Agent SOAP Based
Web Services Framework to scale-up a legacy Network
Monitoring Application (“in press”[9]),which we had
developed in-house. We have extended this work to
demonstrate with implementation results the proof that our
Framework indeed provides Software as a Service with multi-
tenancy and therefore SaaS Level 3 Maturity, where multiple
applications(tenants) use the same code-base(in our case the
two generic web services, namely Registration and
Reporting). The two applications reusing the Web Services
were Network and Temperature Monitoring.

Currently, though the second backend application is

designed to be a Weather Monitoring Application, does only
Temperature Sensing. Work is in progress to extend it to other
monitoring domain such as Pressure and Humidity Sensing, all
of which will use our Generic / Reusable Web Services thus
providing ample proof of multi-tenancy.

We also hope to employ Cluster Computing Techniques to

our Framework thus extending the solution to be a complete
Platform as a Service along with Generic Software as a
Service thus aligning our work towards a Greener Computing
Paradigm and Framework oriented towards Cloud Computing.

ACKNOWLEDGMENT
We would like to thank SUN Microsystems for providing

us Sun Spot Devices for Academic Research. We are indebted
to the Technical Architects and the University Relations Team
of SUN Microsystems, Bangalore for making us adhere to
strict milestone reviews conducted by them. This ensured that
the quality of our research work is maintained, helping it to be
selected for demonstration for the University Track of Sun
Tech Days. We would also like to thank Keerthi Ramnarayan,

Akhil Ravindran, Shishir M Kakaraddi and Suhas D for their
valuable technical inputs and the numerous design and
implementation related assistance provided. We are also
indebted to Dr.Aswatha Kumar for providing the facilities of
High Performance Computing, Sun Technologies and other
Labs, which we could use as test-beds for our work.

REFERENCES
[1] Richard Dim, “Why Software as a Service: Helping Customers Reduce

Costs and Increase Revenue”, White Paper by OpSource:The Business
of Web Operations. http://www.opsource.net

[2] Trumba Corporations, “Five Benefits of Software as a Service”, Trumba
White Paper, Feb 2007

[3] Oracle Corporation, “SaaS Data Architecture”, An Oracle White Paper,
October 2008

[4] GianPaolo Carraro, Fred Chong, Eugenio Pace, “Efficient Software
Delivery Through Service Delivery Platoforms”, The Architectural
Journal, pp 7-13, Journal 12. http://www.architecturejournal.net

[5] Erich Gamma, Ralph Johnson, Richard Helm, John Vissicles, “Design
Patterns: Elements of Reusable Object Oriented Software”, E-Book,
http://www.abook2read.com/

[6] Tameer Nasser, Murali Vrindachalam, “Software as a Service: Build a
Web Delivered SaaS Framework for forms and work-flow driven
applications”, IBM White Paper, Dec 2008.
http://www.ibm.com/developerworks/architecture/library/ar-saasframe/

[7] Accelarance and OpSource White Paper, “Transforming your Software
Product into a Service”, by OpSource:The Business of Web Operations.
http://www.opsource.net

[8] O. P. Rishi1, Ashok Sharma, Archana Bhatnagar and Ashutosh Gupta,
“Service Oriented Architecture for business dynamics: An Agent Based
Approach”, pp.19-28

[9] Mydhili K.Nair, Chandan Bhosle, V. Gopalakrisha, “Net Mobile-Cop: A
Hybrid ‘Intelli-Agent’ Framework to Manage Networks”, presented at
the IEEE International Conference on Intelligent and Multi-
Agents(IAMA2009). In Press.

[10] Mydhili K Nair, Shishir M Kakaraddi, Keerthi M Ramnarayan, V
Gopalakrishna, “Agent with Rule Engine: The ‘Glue’ for Web Service
Oriented Computing applied to Network Management System”,
accepted for publication in the proceedings of IEEE International
Conference on Service Computing(SCC2009)

[11] Hui Xu, Student Member, IEEE, and Debao Xiao, “Applying Semantic
Web Services to Automate Network Management”, Proceedings of the
2nd IEEE International Conference on Industrial Electronics and
Applications, pp.461-466, May 2007.

[12] Aimilios Chourmouziadis, George Pavlou, “Web Services Monitoring:
An Initial Case Study on the Tools Perspective”, Proceedings of IEEE
Network Operations and Management Symposium, NOMS 2008, pp.827-
830, April 2008.

[13] Ricardo Lemos Vianna, Maria Janilce Bosquiroli Almeida, Liane
Margarida Rockenbach Tarouco, Lisandro Zambenedetti Granville,”
Investigating Web Services Composition Applied to Network
Management”,Proceedings of IEEE ICWS 2006, Chicago, USA, pp.531-
540, September 2006.

[14] Torsten Klie, Adrian Belger, Lars Wolf,” A Peer-to-Peer Registry for
Network Management Web Services”, Springer LNCS, Volume
4531/2007, pp. 133-138, June 2007.

[15] Herwig Mannaert , Paul Adriaenssens ,“Web Services Based Systems
for Network Management and Provisioning:”,Proceedings of Advanced
Industrial Conference on Telecommunications Service Assurance, IEEE
Computer Society, pp. 442-445, July 2005. ”

ISSN : 0975-3397

