
V. Rajeswari et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 227-234

227

HETEROGENEOUS DATABASE INTEGRATION
FOR WEB APPLICATIONS

V. Rajeswari ,
Assistant Professor, Department of Information Technology,

Karpagam College of Engineering, Coimbatore –32,
it_rajeshvari@rediffmail.com

Dr. Dharmishtan K. Varughese ,
Professor, Department of Electronics and Communication

Engg,
Karpagam College of Engineering, Coimbatore – 32,

drvarughese@yahoo.com

Abstract

In the contemporary business and industrial environment, the
variety of data used by organizations are increasing rapidly. Also,
there is an increasing demand for accessing this data. The size,
complexity and variety of databases used for data handling cause
serious problems in manipulating this distributed information.
Integrating all the information from different databases into one
database is a challenging problem.

XML has been in use in recent times to handle data in web
appliccations. XML (eXtensible Markup Language) is a very open
way of data communication. XML has become the undisputable
standard both for data exchange and content management. XML
is supported by the giants of the software industry like IBM,
Oracle and Microsoft.

The XML markup language should be the lingua franca of data
interchange; but it’s rate of acceptance has been limited by a
mismatch between XML and legacy databases. This in turn, has
created a need for a mapping tool to integrate the XML and
databases.

This paper highlights the merging of heterogeneous database
resource. This can be achieved by means of conversion of
relational mode to XML schema and vice versa and by adding the
semantic constraints to the XML Schema. The developments that
the industry has seen in recent times in this field is referred to as
the basis.

Keywords : XQuery, XML, Schema, XSLT, Heterogeneous
databases.

I. INTRODUCTION
The most important cause of heterogeneous database is

transformation and sharing of data. By using the metadata of
participate sites [1], a framework is proposed for integrating
heterogeneous database through XML technologies. XML is
fully compatible with applications like JAVA and it can be
combined with any application which is capable of processing
XML irrespective of the platform it is being used on. XML is an
extremely portable language to the extent that it can be used on
large networks with multiple platforms like the internet and it
can be used on handhelds or palm-tops or PDAs. XML is an
extendable language meaning that new tags can be created or
the tags which have already been created can be used.

The various semantic conflicts occurring among
heterogeneous data cubes, the system architecture and related
resolution procedures for all kinds of semantic conflicts are
discussed[2]. For local data cubes with different schemas, a
global XML Schema is defined to integrate the local cube
structures [2] and each local cube is transformed into an XML
document conforming to the global XML Schema. These
transformed XML documents obtained from local cubes will be
manipulated by pre-defined XQuery commands to form a
unified XML document, which can be regarded as the global
cube. The integrated global cube can be easily stored and
manipulated in native XML databases.

II. FUNDAMENTALS OF DATABASE MANAGEMENT SYSTEMS
Relation schema is defined as a set of elements (attributes)

connected by a structure (table) to describe something (an entity)
in the relational database [3]. This entity should have a certain
meaning associated with these elements, and the semantics
specify how to interpret data values stored in the schema.

A classification scheme is proposed for various kinds of
semantic conflicts, and it is applied to develop a query execution
plan which optimizes multi-database queries based on different
types of schematic conflicts with the least execution cost. The
conflicts are classified as value-to-value conflicts, value-to-
attribute conflicts, value-to-table conflicts, attribute-to-attribute
conflicts, attribute-to-table conflicts, table-to-table conflicts[2].
These types of conflict classifications were further partitioned
into two categories such as conflicts of similar schema structures
and conflicts of different schema structures.

The semantic conflicts in a heterogeneous database system
are further classified as schema conflicts and data conflicts[2].
There are two causes for schema conflicts. One is the use of
different structures for the same concept, and the other is the use
of different specifications for the same structure.

Semantic Conflicts

1. Value-to-value conflicts: These conflicts occur when
databases use different representations for the same data. This
type of conflicts can be further distinguished into the following
types:

(a) Data representation conflicts: These conflicts occur when
semantically related data items are represented in different data
types.

ISSN : 0975-3397

V. Rajeswari et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 227-234

228

(b)Data scaling conflicts: These conflicts occur when
semantically related data items are represented in different
databases using different units of measure[2].

(c)Inconsistent data: These conflicts occur when
semantically related attributes for the same entity have different
definite data values in different databases.

2. Value-to-Attribute conflicts: These conflicts occur when
the same information is expressed as attribute values in one
database and as an attribute name in another database.

3. Value-to-Table conflicts: These conflicts occur when the
attribute values in one database [5] are expressed as table names
in another database.

4.Attribute-to-Attribute conflicts: This occurs when
semantically related data items are named differently or
semantically unrelated data items are named equivalently[2].
The former case is also called synonyms and the latter case
homonyms.

5.Attribute-to-Table conflicts: These conflicts occur if an
attribute name of a table in a database is represented as a table
name in another database.

6.Table-to-Table conflicts: These conflicts occur when
information of a set of semantically equivalent tables[1] are
represented in a different number of tables in another databases.
When integrating relations with such conflicts into a global
relation, null values are usually generated. Such phenomenon is
also called missing data.

 The types of conflict are further classified into the following
two categories.

a. Conflicts of similar schema structures. This category
includes value-to-value conflicts, attribute-to-attribute conflicts,
and table-to-table conflicts.

b. Conflicts of different schema structures. This category
includes value-to-attribute conflicts, value-to-table conflicts, and
attribute-to-table conflicts[2].

For tables with conflicts of similar schema structures, an
outerjoin operation is usually employed to integrate the tables
into a unified one.

III. XML AND XQUERY
A) XML Introduction

XML is a set of rules for encoding documents electronically.
As of 2009, hundreds of XML-based languages have been
developed[6], including RSS, Atom, SOAP, and XHTML. XML
has become the default file format for most office-productivity
tools, including Microsoft Office, OpenOffice.org, AbiWord,
and Apple's iWork.

XML’s design goals emphasize simplicity, generality, and
usability over the Internet [5]. It is a textual data format, with
strong support via Unicode for the languages of the world.
Although XML’s design focuses on documents, it is widely used
for the representation of arbitrary data structures, for example in
web services.

There are a variety of programming interfaces[6] which
software developers may use to access XML data and several
schema systems designed to aid in the definition of XML-based
languages

B) XML Declaration
This is a string that is often found at the very beginning of

XML documents[5].

<?xml version="1.0" encoding='UTF-8'?>

The following XML document uses all the constructs and
concepts.

 <?xml version="1.0" encoding='UTF-8'?>
<painting>

<img src="India.jpg" alt=' Unity in
Diversity'/>

<caption>This is painted in
<date>1511</date>
<date>1512</date>

</caption>
</painting>

Figure 1 XML Program

There are four elements in this example document.
They are painting, img, caption, and date. date is a child of
caption, which is a child of painting. img has two attributes, src
and alt.

C) Well-formedness and error-handling

The XML specification defines an XML document as a text
which is well-formed, i.e., it satisfies a list of syntax rules
provided in the specification.

• Every start – tag must have a matching end tag.
• Elements may nest but may not overlap.
• There must be exactly on root element.
• Attribute value must be quoted.
• An element may not have two attribute with the same name.
• Comments and processing instructions may not appear inside the

tags.
• None of the special syntax characters such as "<" and "&"

appear except when performing their markup-delineation
roles.

D) Programming interfaces
A variety of APIs[5] for accessing XML have been

developed and used, and some have been standardized.
Existing APIs for XML processing tend to fall into these categories:
• Stream-oriented APIs accessible from a programming language,

for example SAX and StAX.
• Tree-traversal APIs accessible from a programming language for

example DOM and XOM.
• XML data binding which provides an automated translation

between an XML document and programming-language objects.
• Declarative transformation languages such as XSLT and XQuery.

Stream-oriented facilities require less memory for certain
tasks which are based on a linear traversal of an XML document.

ISSN : 0975-3397

V. Rajeswari et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 227-234

229

They are faster and simpler than other alternatives. Tree-
traversal and data-binding APIs require more memory. They are
often found more convenient for use by programmers. Because
APIs include declarative retrieval of document components via
the use of XPath expressions.

E) XML on the Web
XML began as an effort to bring the full power and structure

of SGML to the Web in a form that was simple enough for
nonexperts to use. Like most great inventions, XML [4] turned
out to have uses far beyond what its creators originally
envisioned. XML is still a very attractive language in which to
write and serve web pages. Since XML documents must be well-
formed and parsers must reject malformed documents, XML
pages are less likely to have annoying cross-browser
incompatibilities. Since XML documents are highly structured,
they're much easier for robots to parse. Since XML element and
attribute names reflect the nature of the content they hold,
search-engine robots can more easily determine the true meaning
of a page.

XML on the Web comes in three flavors[7]. The first is
XHTML, an XMLized variant of HTML 4.0 that tightens up
HTML to match XML's syntax. For instance, XHTML requires
that all start-tags correspond to a matching end-tag and that all
attribute values be quoted. XHTML also adds a few bits of
syntax to HTML, such as the XML declaration and empty-
element tags that end with />. Most of XHTML can be displayed
quite well in legacy browsers, with a few notable exceptions.

The second flavor of XML on the Web is direct display of
XML documents that use arbitrary vocabularies in web
browsers. Generally, the formatting of the document is supplied
either by a CSS stylesheet or by an XSLT stylesheet that
transforms the document into HTML.This flavor requires an
XML-aware browser and is not supported by older web
browsers such as Netscape 4.0.

A third option is to mix raw XML vocabularies, such as
MathML and SVG, with XHTML using Modular XHTML.
Modular XHTML lets you embed RDF cataloging information,
MathML equations, SVG pictures, and more inside your
XHTML documents. Namespaces sort out which elements
belong to which applications.

F) XQUERY
XQuery is a query and functional programming language

that is designed to query collections of XML data.XQuery 1.0 [7] was
developed by the XML Query working group of the W3C. The work
was closely coordinated with the development of XSLT 2.0 by the
XSL Working Group, the two groups shared responsibility for XPath
2.0, which is a subset of XQuery 1.0. XQuery 1.0 became a W3C
Recommendation on January 23, 2007.

The mission of the XML Query[7] project is to provide
flexible query facilities to extract data from real and virtual documents
on the World Wide Web. Therefore it finally provides the interaction
between the Web world and the database world. Ultimately collections
of XML files will be accessed like databases.
G) Features

XQuery provides the means to extract and manipulate data
from XML documents or any data source that can be viewed as
XML, such as relational databases or office documents. XQuery

uses XPath expression syntax to address specific parts of an
XML document. It supplements this with a SQL-like
"FLWOR[7] expression" for performing joins. A FLWOR
expression is constructed from the five clauses after which it is
named: FOR, LET, WHERE, ORDER BY, RETURN.

The language also provides syntax allowing new XML
documents to be constructed. Where the element and attribute
names are known in advance, an XML-like syntax can be used
in other cases, expressions referred to as dynamic node
constructors are available. All these constructs are defined as
expressions within the language, and can be arbitrarily nested.

The language is based on a tree-structured model of the
information content of an XML document, containing seven
kinds of node such as document nodes, element node, attribute
node, text node, comments, processing instructions and
namespaces.

The type system of the language models all values as
sequences. The items in a sequence can either be nodes or
atomic values. Atomic values may be integers, strings, booleans,
and so on. the full list of types is based on the primitive types
defined in XML Schema.

Uses of Xquery are as follows :

1. Extracting information from a database [1] for a use in web
service.

2. Generating summary reports on [3] data stored in an XML
database.

3. Searching textual documents on the Web for relevant
information and compiling the results.

4. Selecting and transforming XML data to XHTML to be
published on the Web.

5. Pulling data from databases to be used for the application
integration.

6. Splitting up an XML document that represents multiple
transactions into multiple XML documents.

A. H) Examples in XML-QL
The simplest XML-QL queries extract data from an

XML document. The example XML input is in the document
www.a.b.c/bib.xml, and assume that it contains bibliography
entries that conform to the following DTD:

<!ELEMENT book (author+, title,
publisher)>
<!ATTLIST book year CDATA>
<!ELEMENT article (author+, title, year?,
(shortversion|longversion))>
<!ATTLIST article type CDATA>
<!ELEMENT publisher (name, address)>
<!ELEMENT author (firstname?, lastname)>

Figure 2 DTD
This DTD [6] specifies that a book element contains one or more
author elements, one title, and one publisher element and has a
year attribute. An article is similar, but its year element is
optional, it omits the publisher, and it contains one shortversion
or longversion element. An article also contains a type attribute.
A publisher contains name and address elements and an author

ISSN : 0975-3397

V. Rajeswari et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 227-234

230

contains an optional firstname and one required lastname. The
name, address, firstname and lastname are all CDATA, i.e.,
string values.

I) Matching Data Using Patterns.

 XML-QL uses element patterns[7] to match data in an
XML document. This example produces all authors of books
whose publisher is Mc Graw-Hill in the XML document
www.a.b.c/bib.xml. Any URI that represents an XML-data source
may appear on the right-hand side of IN.

WHERE <book>
<publisher><name>Mc-Graw-Hill
</name></publisher>
<title> $t </title>
<author> $a </author>
 </book> IN "www.a.b.c/bib.xml"
 CONSTRUCT $a

Figure 3 Element Patterns - I

Informally, this query matches every <book> element in the
XML document www.a.b.c/bib.xml that has at least one <title>
element one <author> element, and one <publisher> element
whose <name> element is equal to Mc Graw-Hill. For each such
match, it binds the variables $t and $a to every title and author
pair. The variable names are preceded by $ to distinguish them
from string literals in the XML document (like Mc-Graw-Hill).

For convenience, </element> can be abbreviate by </>. This
abbreviation is a relaxation of the XML syntax. Thus the query
above can be rewritten as:

WHERE <book>
<publisher><name> Mc-Graw-Hill </></>
<title> $t </>
<author> $a </>
</> IN "www.a.b.c/bib.xml"
CONSTRUCT $a

Figure 3.1 Element Patterns - II

J)Constructing XML Data.

 The query above produces an XML document that contains
a list of (<firstname>,<lastname>) [5] pairs or (<lastname>)
elements from the input document. Often it is useful to construct
new XML data in the result. The following query returns both
<author> and <title> and groups them in a new <result> element:

WHERE <book>
<publisher> <name>Addison-Wesley </> </>
<title> $t </>
<author> $a </>
</> IN "www.a.b.c/bib.xml"
CONSTRUCT <result>
<author> $a </>
<title> $t </>

</>
Figure 3.2 Element Patterns - III

<bib><book year="2006">
<!-- A good introductory text -->
<title> Database System Concepts </title>
<author>
<lastname>Silberschatz Korth Sudharsan
</lastname>
</author>
<publisher>
<name>Mc-Graw-Hill</name>
</publisher>
</book>
<book year="2003">
<title>Operating Systems </title>
<author>
<lastname>WilliamStallings </lastname>
</author>
<author>
<lastname>Williams</lastname></author>
<publisher>
<name>Mc-Graw-Hill </name >
</publisher>
</book></bib>

Figure 4 Bibliographic Data

When applied to the example data in Figure 4. the example
query would produce the following result:

<result>

<author><lastname>SilberschatzKorth
sudharsan</lastname>

</author>
<title>Database System Concepts </title>

</result>
<result>

<author><lastname>WilliamStallings
</lastname></author>

<title>Operating Systems</title>
</result>
<result>

<author><lastname>Williams
</lastname></author>

<title>Foundation for Object/Relational
Databases</title>

</result>

Figure 5 Result of Bibliographic Data

IV. SYSTEM STRUCTURE
The data warehouse creation [1] module can be regarded as

user of the heterogeneous database system. When a user poses a
global query on the integrated system, the global site
decomposes the global query into sub-queries to request each

ISSN : 0975-3397

V. Rajeswari et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 227-234

231

participant to return the data in XML format[3]. This can be
easily achieved in contemporary commercial database products
(e.g., MS SQL Server 2000, IBM DB2 Extender and Oracle).
Besides, the DBA in each site should prepare some XSLT[2]
format files, together with some necessary template files, in
advance to transform local data into the global schema format.
Finally, the transformed data are integrated into a consolidated
view with the global query applied on it to return global data to
the user. The integration process utilizes the semantic
knowledge of all participate local schemas. This should be
prepared or discovered before integration.

Figure 6 Heterogenous Database Architectures

A) Two Databases With Different Semantic Conflicts

There are two databases containing semantically related
information about books but in different formats. Sites X and Y
contain tables named products and productslist respectively.
There are some semantic discrepancies between these sites.
They are listed as follows:

1. There are two attribute-to-attribute conflicts: The attributes
products.pno and Products.name in Site X are respectively
named productlist.pid and productlist.productname in Site Y.
2. There are three value-to-value conflicts: The products.cost stores
the list price of every product, but the productlist.cost stores the
discounted price (with 40% off). Besides, The
productlist.location stores more detailed data than
products.location.
3. There is a table-to-table conflict: The products.component is
missing in the relation productlist. Besides, the
productlist.manufacturing_year is also missing in the relation
products.

Figure 7 Two Sites with Conflicts of Similar Schema Structures.

The two tables products and prductlists can be integrated as

ProductsData(pno, name, company, cost, dealer, location,
components, manufacture_year). When the user wishes to show
ProductsData.cost by the original list price, ProductsData.dealer
by the full names, and ProductsData.location by the concise
names two sets of XSLT and template files are used to transform
both tables into ProductData, respectively. Figure 8 and Figure 9
show the XSLT and template files for Site X. For Site Y, the
XSLT and template files are shown in Figure 10 and Figure 11
respectively. Finally, both tables can be outer-joined into
ProductData as Figure 12 illustrates.

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Tran
sform" version="1.0">

<xsl:template match = '*'>
<xsl:apply-templates />

</xsl:template>
<xsl:template match = 'products'>

<TR><TD><xsl:value-of select = '@pno'
/></TD>

<TD><xsl:value-of select = '@name'
/></TD>

<TD><xsl:value-of select = '@company'
/></TD>

<TD><xsl:value-of select = '@cost'
/></TD>

<TD><xsl:value-of select = '@dealer'
/></TD>

<TD><xsl:value-of select = '@location'
/></TD>

ISSN : 0975-3397

V. Rajeswari et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 227-234

232

<TD><xsl:value-of select =
'@components' /></TD>

</TR>
</xsl:template>

<xsl:template match = '/'>
<HTML>
<HEAD>

<STYLE>th { background-color: #CCCCCC
}</STYLE>
</HEAD>
<BODY>

<TABLE border='1' style='width:600;'>
<TR><TH colspan='7'> ProductsData

</TH></TR>
<TR><TH>pno</TH><TH>Name</TH><TH>compnay</

TH><TH>cost</TH>
<TH>dealer</TH><TH>location</TH><TH>compon

ents</TH></TR>
<xsl:apply-templates select = 'ROOT' />

</TABLE>
</BODY>
</HTML>

</xsl:template>
</xsl:stylesheet>

Figure 8 The XSLT for Site X - Products.xsl

<ROOT xmlns:sql="urn:schemas-microsoft-
com:xml-sql" sql:xsl="Products.xsl">
<sql:query>
SELECT pid, name, company, cost, dealer,
location, components FROM products
FOR XML AUTO
</sql:query>

</ROOT>

Figure 9 The Template file for Site X - Products.xml

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Tran

sform" version="1.0">
<xsl:template match = '*'>
<xsl:apply-templates />

</xsl:template>
<xsl:template match = 'productlist'>

<TR>
<TD><xsl:value-of select = '@bid' /></TD>

<TD><xsl:value-of select =
'@productname' /></TD>

<TD><xsl:value-of select = '@company'
/></TD>

<TD><xsl:value-of select = '@cost'
/></TD>

<TD><xsl:value-of select = '@dealer'
/></TD>

<TD><xsl:value-of select = '@location'
/></TD>

<TD><xsl:value-of select =
'@manufactureyear' /></TD>

</TR>
</xsl:template>

<xsl:template match = '/'>
<HTML>
<HEAD>

<STYLE>th { background-color: #CCCCCC
}</STYLE>
</HEAD>
<BODY>

<TABLE border='1' style='width:600;'>
<TR><TH colspan='7'>Productdata</TH></TR>
<TR><TH>pno</TH><TH>name</TH><TH>company</

TH><TH>cost</TH>
<TH>dealer</TH><TH>location</TH><TH>manufa

ctureyear</TH></TR>
<xsl:apply-templates select = 'ROOT' />

</TABLE></BODY></HTML>
</xsl:template>
</xsl:stylesheet>

Figure 10 The XSLT for Site Y - productlist.xsl

<ROOT xmlns:sql="urn:schemas-microsoft-
com:xml-sql" sql:xsl="productlist.xsl">

<sql:query>
SELECT pid, productname, dealer, cost/0.4

as cost,
rtrim(publisher) + ' Company' as dealer,
right(rtrim(location), 2) as location,

manuafactureyear
FROM productlist
FOR XML AUTO
</sql:query>

</ROOT>
Fig 11 The Template file for Site Y. productlist.xml

p
i
d

productn
ame

compan
y

cost

dealer

loc
atio
n

comp
onent
s

manufa
ctureyea
r

1 MotherB
oard

Heiss 2000 IBM
Compan
y

Indi
a

100 2000

2 Micro
Controll
ers

Joe 2500 Microns
Compan
y

US
A

65 2009

Fig 12 Integrated Relation ProductData in the Global site.

V. INTEGRATING DATA FROM MULTIPLE XML
SOURCES

In XML-QL, several sources may be queried simultaneously
and produce an integrated view of their data. In this example, we

ISSN : 0975-3397

V. Rajeswari et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 227-234

233

produce all pairs of names and social-security numbers by
querying the sources www.a.b.c/data.xml and
www.irs.gov/taxpayers.xml[7]. The two sources are joined on the
social-security number, which is bound to SSN in both
expressions. The result contains only those elements that have
both a name element in the first source and an income element
in the second source.

WHERE <person>
<name></> ELEMENT_AS $n
<ssn> $ssn </>
</> IN "www.a.b.c/data.xml",
<taxpayer>
<ssn> $ssn </>
<income></> ELEMENT_AS $i
</>IN "www.irs.gov/taxpayers.xml"
CONSTRUCT <result> <ssn> $ssn </>$n $i </>

Figure 13 Integrating data from multiple XML sources

Alternatively, Skolem functions can be used and a related,
but not equivalent, query is written in two fragments:

{ WHERE <person>
<name> </> ELEMENT_AS $n
<ssn> $ssn </>
</> IN "www.a.b.c/data.xml"
CONSTRUCT <result ID=SSNID($ssn)> <ssn>
$ssn </> $n </>}
{ WHERE <taxpayer>
<ssn> $ssn </>
<income> </> ELEMENT_AS $i
</> IN "www.irs.gov/taxpayers.xml"
CONSTRUCT <result ID=SSNID($ssn)> ssn>
$ssn </> $i </>}
Figure 14 Fragmented Queries

This query contains, in addition to the previous query, all
persons that are not taxpayers, and vice versa. This is the outer
join of the entities "www.a.b.c/data.xml" and
"www.irs.gov/taxpayers.xml". XML-QL queries are structured
into blocks and sub-blocks: the latter are enclosed in braces ({...
}), and their semantics is related to that of outer joins in
relational databases. In this example, the root block is empty and
there are two sub blocks[7]. In the first sub block, all persons'
names are produced. Each result has a unique OID given by that
person's SSN. In the second sub block, persons and their
incomes are produced.

Wherever there is a match with a previously generated OID,
the <income> will be appended to the object rather than included
in a new <person>. Query blocks are powerful. The following
query retrieves all titles published in 2007 from the bibliography
database, and it also retrieves the publication month for journal
articles and the publisher for books.

WHERE <$e> <title> $t </><year> 2007 </>
</> CONTENT_A $p IN "www.a.b.c/bib.xml"
CONSTRUCT <result ID=ResultID($p)> <title>
$t </> </>
{WHERE $e = "journal-paper", <month> $m
</> IN $p
CONSTRUCT <result ID=ResultID($p)>
<month> $m </> </>
}
{
WHERE $e = "book",
<publisher>$q </> IN $p
CONSTRUCT
<result ID=ResultID($p)> <publisher>$q
</> </>
}

Figure 15 Output from Bibliography database

The outer block runs over all publications in 2007, and
produces a result element with their title. The first sub block
checks if e is journal-paper and has a month tag. If so, it adds the
month element to the same publication. The second sub block
checks if e is a book and has a publisher, and adds that publisher
element

VI. CONCLUSION
XML – based heterogonous data integration and query has

been a hot technology nowadays. Through the Intranet and XML
Technology, transforming the information system of enterprise
inside, we can realize integrating, sharing and utilizing of the
hetrerogenous data source differently and effectively, which has
improved the whole efficiency of the Information System.The
mapping from heterogenous database integration schemas to
XML documents can be prepared according the proposed
procedures.

REFERENCES
[1] Frank S.C. Tseng, Heterogeneous database Integration Using XML.
[2] Frank S.C. XML based heterogeneous Database Integration for Data

warehouse Creation.
[3] Wei-Jung Shiang, Minng-Ying Ho, “An Interactive Tool Based on XML

Technology for Data Exchange between Heterogeneous ERP systems”,
Journal of CIIE, Volume 22, No.4, pp.273-278(2005).

[4] Yanxinwang, Kuiheyang “Research and Realization of XML Based
Heterogeneous Databases Integration”

[5] www.xml.com/pub/a
[6] Giovanni Guardalven “ Integrating XML and Relational Database

Technologies” Dec., 2004.
[7] www.w3schools.com/xquery

ISSN : 0975-3397

V. Rajeswari et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 227-234

234

Author’s Biography

 Ms. V. Rajeswari is Assistant Professor
in the department of Information
Technology, Karpagam College of
Engineering, Coimbatore. Her areas of
interest are J2EE and Database Management
Systems.

Dr. Dharmishtan K. Varughese is

Professor in the department of Electronics
and Communication Engg, Karpagam
College of Engineering, Coimbatore. His
areas of interest are Database Management
Systems & Antenna and wave propagation.

ISSN : 0975-3397

