
S. Bhalerao et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 222-226

222

Generalizing Agile Software Development Life Cycle
S. Bhalerao1, D. Puntambekar2

Master of Computer Applications
Acropolis Institute of Technology and research

Indore, India
1Bhalerao.shilpa@gmail.com,

2d_puntamberkar@rediffmail.com

M.Ingle
School of computer Science and Information Technology

Devi Ahilya University
Indore, India

maya_ingle@rediffmail.com

Abstract— In last decade, various agile methods have been
introduced and used by software industry. It has been observed
that many practitioners are using hybrid of agile methods and
traditional methods. The knowledge of agile software
development process about the theoretical grounds, applicability
in large development settings and connections to establish
software engineering disciplines remain mostly in dark. It has
been reported that it is difficult for average manager to
implement agile method in the organization. Further, every agile
method has its own development cycle that brings technological,
managerial and environmental changes in organization. A proper
roadmap of agile software development in the form of agile
software development life cycle can be developed to address the
aforesaid issues of agile software development process. Thus,
there is strong need of agile software development life cycle that
clearly defines the phases included in any agile method and also
describes the artifacts of each phase. This generalization of agile
software development life cycle provides the guideline for
average developers about usability, suitability, applicability of
agile methods.

Keywords-Agile software Development; extreme Programming;
Adaptive software developmen; Scrum; Agile Method;story.

I. INTRODUCTION
Agile Methods (AMs) have been adopted by many IT

organizations and have generated many quality products of
software industry. These methods have gained higher edge on
traditional software development by accommodating
frequently changing requirements in high tight schedules [1].
AMs have promised higher customer satisfaction, low defect
rates, higher usability and a solution to higher changing
requirements [2]. AMs include mainly; Extreme Programming
(XP), Scrum, Feature Driven Development (FDD), Crystal
methodology, Dynamic System Driven Development
(DSDM), Adaptive Software Development (ASD), Open
Source (OS), Agile Modeling (AM), and Pragmatic
Programming (PP) [3]. It has been observed that all aforesaid
methods are based on agile manifesto and have their own
software development life cycle for improving productivity
and quality of software [4]. It has been noticed that
applicability of these methods is mainly in small software with
low life critical systems. Many opponents have claimed that
agile software development is set of ad-hoc practices and does
not have sound principles behind it. Further, it has been stated
by many software researchers that it is hard for average
software developer/ manager to understand and manage entire

agile approach to development [5]. Attempts have been made
to reconcile the AMs with plan driven methods [6]. Still, there
is lack of a generalized Agile Software Development Life
Cycle (ASDLC) for AMs that include complete agile
principles and practices as whole. Therefore, in this paper, we
have proposed ASDLC and also discuss the documents or
artifacts required to produce in particular phase. It is highly
beneficial to identify the activities and practices associated
with particular phase of software development. Knowledge of
ASDLC is also useful to reduce the ratio of experienced
member and inexperienced members in team. This will be
highly useful for generating trust in industry about Agile
Software Development Process (ASDP).

In this paper, firstly, we will discuss ASDP and research in
this area with their pros and cons in Section 2. Secondly, we
will propose the generalized ASDLC in Section 3. Section 3
also includes the activities and document produced in various
phases. Lastly, conclusion and future scope is drawn in
ASDLC in Section 4.

II. BACKGROUND
Many software development methods/ models have been

proposed since the evolution of software. Some development
models had shown remarkable success in stable and
predictable environment. At the same time, these models have
proven to be one of the major causes of failure in disruptive
software development. In internet and mobile technology,
frequent changes in requirements, technology and staff have
been observed [7]. Thus, software development process has
become more cumbersome in such environment. Traditional
Software Development Methods (TSDMs) are proven to be
unsuccessful and software success rate of TSDMs is less than
40% in such environments [8]. A new way of software
development i.e. agile software development is outcome of the
frustration of many practitioners using TSDMs. In last decade,
a number of AMs have been evolved based on Agile
Manifesto established in 2001[www.agilemanifesto.org]. It
has been observed that agile principles and practices ensure
the customer satisfaction by involving the customer in all the
phases of software development. It emphasizes mainly;
accommodating last minute changes, delivering working
software, individual interactions etc.

ISSN : 0975-3397

S. Bhalerao et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 222-226

223

TABLE I. SUMMARY OF SOFTWARE DEVELOPMENT LIFE CYCLE OF
POPULAR AGILE METHODS

Sr.
no

Method Phases Description

Exploration Write story for current iteration
Iteration Panning Prioritize Stories, effort and resource

estimates
Iteration to release Analysis, design, coding, testing
Production Rigors testing,
Maintenance Customer supports, release for

customer use

1 XP

Death Phase No more requirements
Pre-game Preparation of product backlog list

,effort assessment, high level
architectural design

Development Sprints, analysis, design, delivery,

2 Scrum

Post game System testing, integration testing,
documentation releases

Develop over all
model

Scope, features, model, use cases are
decided in various iterations

Build the feature
list

Feature list is prepared

Plan by feature Not clearly specified
Design by feature Not clearly specified

3 FDD

Build by feature
Feasibility Study Feasibility of the system is assessed
Business Study Essential business and technology

characters are analyzed
Functional model
iteration

Analysis, functionality prioritization,
nonfunctional requirements and risk

assessment.
Design and build
iteration

Build and testing of system

4 DSDM

Implementation Actual production of the system
Speculate Project initiation, adaptive cycle

planning
Collaborate Concurrent component eng.

5 ASD

Learn Review, F/A, Release

AMs are people centric and believe in short iterations and
small releases to get feedback on the working software. This
feedback is useful in improving the quality of the software. It
has been noticed that each AM has individual software
development life cycle and characteristics. For example, XP
possesses five phases namely; exploration, iteration plan,
iteration to release, production phase and death phase. On
other hand, DSDM and other methods follow different phases
of life cycle. XP emphasizes on customer involvement in
every activity of software development and lacking in
management practices whereas Scrum mainly deals with the
project management activities [2]. Although, all these methods
use perform analysis, design, coding, and implementation in
iterative and incremental manner. Table 1 represents the
popular AMs with phases and details. It is clear from the Table
1 that DSDM not only stresses on development but also
includes the feasibility and business study. Further, it has
been noticed by many researchers that AMs do not follow all
the phases of software development life cycle [3]. Some
researchers have attempted to include missing phases of SDLC
in existing AMs [9]. However, there is strong need to define
generalized agile software development life cycle to increase
the understandability of agile practices and principle to
increase the use of these methods.

III. AGILE SOFTWARE DEVELOPMENT LIFE CYCLLE
(ASDLC)

Proposed generalized Agile Software Development Life
Cycle (ASDLC) is designed on the basis of common practices
and principles used in all existing AMs. We have defined
various phases in ASDP and activities performed in each
phase along with artifacts required in each phase. Complete
ASDLC is shown in Fig. 1 and discussed as follows:

A. Vision and Project Approval
ASDLC starts with the vision or inception phase that deals

with the need of new system by analyzing problems in existing
system. Management, product manager, users and team
members establish the scope and boundary conditions of
proposed system. At this level, objective is apparent but the
features fulfilling the objectives may be uncertain. Main
objective of this phase is to identify critical uses of the system,
level of uncertainty of the system, overall estimation of size
and duration of the system using algorithmic or non-
algorithmic approach. Further, systematic analysis is
performed to identify the feasibility of the system at
operational and economical level with clear specified
requirements. It is concerned with technical possibility of the
system with incurring risk associated with it. At same level,
feasibility of particular AM is assessed. This assessment is
based on project type, and personnel and organizational issues
etc. Business study of the system is required to analyze the
essential characteristics of the business and technology. For
example, a website for income tax submission must require its
technicalities involved in it. Major objective of business study
is identification of class of affected users. This affected class
of users is useful source of information in software
development cycle. It has been noticed that early estimation is
useful in project approval.

It is a non iterative phase and generally completed in two-
three weeks time. High level description of the system, early
estimates are mandatory documents produced in this phase.

B. Exploration Phase
Exploration phase is an iterative and incremental phase to

reduce the uncertainty and ambiguities in requirements by
continuous meeting of stakeholders in the form of workshops
and brainstorming. Some of the AMs have preferred customer
as team member but proposed ASDLC recommends the
maximum communication between team and customer to
resolve the requirement related issues by using any preferred
mode of communication between customer and team [9].
Requirements may be captured in form of stories and
documented in story cards that can be referred for future
references. Typical format of story cards contains information
about author, story id, story description, further changes in
story and details of related stories etc. [9]. Artifacts produced
are informal requirements description in the form of stories.
Team starts with selected experienced team members on agile
software development. Selected team members start
communicating with the customers to understand the problems
and requirements of the proposed system. Generally, while
experienced team members are working on requirements,

ISSN : 0975-3397

S. Bhalerao et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 222-226

224

Fig. 1 Agile Software Development Life Cycle

A D C T

Early
Estimates

Team
Training Feedback

Review
feedback Design

inspection

Unit
Testing

Integration
Testing

Exploration
phase Iteration Plan

Initial
Architecture

Iterative
Estimates

Code
inspection Pre-

release

Production

Feedback

Acceptance
Testing

Early
Scope Requirements

prioritization

Feasibility
& Business

Study

Vision &
Approval

Rigors
Testing Requirement

Gathering
Feedback

ISSN : 0975-3397

S. Bhalerao et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 222-226

225

inexperienced team members have been trained on agile
process and technology used for training and enhance the ways
to improve quality of product being developed. Further,
feedback of the last release is also accommodated in this phase
and major changes in the last releases are defined as new
requirements.

C. Iteration Planning
Iteration planning is most important phase of ASDLC and

possesses many activities of software development required to
schedule the project. First activity in this respect is review of
the working software released in last iteration. Participants
assess the progress and increment of the work product and
discuss the future plan of the project. At the same time,
requirement prioritization is performed to get maximum ROI
from working software. In iteration planning, list of
requirements in stack is updated depending on the feedback
and requirements received from customers. This list is
reviewed for prioritization of requirements. Prioritization is
based on various factors mainly; value, knowledge, financial
returns etc. For example, a feature that requires team to
improve their technical skills has been developed in later stage
but a feature that has higher financial returns must be kept at
higher priority. This prioritization stack is useful in increasing
ROI and producing working software in shorter time period.
Prioritization has been done for only those features that are
clear and unambiguous. Project manager, customer
representative and team members sit together to decide the
priority of requirements. Moreover, iteration plan phase
possesses iterative estimation activity to estimate size, cost
and duration of the project. It also re-estimates efforts
depending on team velocity [13].

This phase also ensures the resource requirements of the
system. Artifacts produced in this phase are prioritized stack
requirements and set of requirements from the stack is selected
for current iteration.

C. ADCT Phase
This phase is an iterative phase that deals with Analysis,

Design, Coding, and Testing (ADCT). In this phase,
functionality of the system is produced and enhanced in new
increments. It requires several iterations before releasing the
product. Decided schedule in iteration planning is decomposed
in several small iterations of one to four weeks. First iteration
develops the architecture of whole system by enforcing the
selection of stories that form the system. In successive
iterations, designing and coding along with testing is
performed. In last iteration, product is ready to deploy at
customer site. It incorporates designing and coding with unit
testing using the concept of pair programming. ASDP always
possesses simple design to incorporate changes in the
requirements. Design guidelines include metaphors, CRC
cards, Spike solution and re-factoring. CRC card is an index
card that is used to represent responsibilities, relations of
classes used in designing a particular story. Spike solution is
small focused effort used to explore solution to the problem. It
has been observed that adding more functionality in early
stages of the software leads to a poor design document. Any

one of aforesaid practices leads to just enough, simple and
understandable documents. System has been inherently
designed to change. For example, system can work for any
database. This type of independency of code and design
provide lesser burden when changes are triggered. Thus,
ASDP use design patterns to maintain low coupling and high
cohesion among modules. Functionality testing and rigorous
integration testing is performed by team of customer and
developers before release the product. Main activities of this
phase are simple designing, maintaining coding standards and
rigors testing by Test Driven Development (TDD) and
functional testing. Extra care is taken to design a code simply
by code and data re-factoring.

Major artifacts in this phase are design documents and
codes of system.

D. Release Phase
This phase can be decomposed in two sub-phases namely;

pre-release and production as shown in Fig 1. Pre-release
phase recommends extra testing (i.e. integration and
acceptance testing) and checking of functional and non-
functional requirements of the system to be released. It has
been advised to include some minor changes expected by the
user in the release and major changes are expected to
accommodate in next iteration. On the other hand, production
phase deals with releasing the product for customer use. At
this time, training for users of the system is provided for
operation ease. It has been observed that team handles two
responsibilities after first release of the system. Firstly, team is
involved in enhancing the functionalities of product. Secondly,
team has to take responsibility of system in running state
thereby providing customer helpdesk.

We have attempted to define the ASDLC after reviewing
the all phases of software development of existing AMs. We
have also included the phases introduced by other researchers
thereby increasing the trust and faith on agile software
development.

IV. CONCLUSION
ASDP is process to handle the disruptive software

environment by incorporating practices and principles
established in 2001. It has been observed that agile practices
such as delivering working software, short iterations and
feedback etc. increase the internal and external software
quality. Some practitioners stated that agile practices are
collection of best practices of the software development.
Although, there are many success stories of ASDP in last
decade, but knowledge of implementing these practices in a
particular project is very scared. Therefore, we have analyzed
software development life cycle of all existing AMs and
proposed a generalized ASDLC. Proposed ASDLC is essence
of all existing AMs and represents all phases required in a
software development cycle in iterative and incremental
manner. It also encourages the practices of simple design, re-
factoring to maintain the simplicity. Thus, proposed work is
useful for adoption of AMs with following benefits:

ISSN : 0975-3397

S. Bhalerao et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 222-226

226

• ASDLC is a step towards resolving the
misconceptions about AMs that these methods are ad-
hoc coding practices.

• A systematic approach to define all the phases of

ASDP that is useful to average project manager to
understand the principles and practices behind agility.

• ASDLC represents the activities and document

required in each phase thereby providing the
developer and user view for better understanding of
AMs.

• ASDLC provides flexibility to handle phases in

concurrent and iterative manner.

• Feedback in ADCT phase improves internal quality
whereas feedback in iteration planning improves
external quality of the product.

Thus, proposed ASDLC is a step towards improving agile
software development which will leads to fast accessibility of
AMs. However, this is preliminary work and needs
verification on large projects.

REFERENCES

[1] Aoyamma, M., “Agile Software Process and its Experiences”, In IEEE
Transaction 1999.

[2]Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J., Agile Software
Methods Rreview and Analysis, Espoo, Finland: Technical Research Centre
of Finland, VTT publication 478 available
http://www.inf.vtt.fi/pdf/publications/2002/478.pdf.2002

[3] Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J., “New
Directions on Agile Methods : A Comparative Analysis”, In Proceeding of
25th International conference on Software engineering 2003.

[4] Beck, K., Extreme Programming Explained, Pearson Education Low price
Edition Asia.

[5] Bergin, J., and Grossman, F., “Extreme Construction: Making Agile
Accessible”, In Proceedings of IEEE Agile 2006 Conference.

[6] Bhalerao, S., and Ingle, M., “Formalizing Communication Channel in
Agile Methods”, In Proceedings of International Conference on Trends in
Information Science and Computing (TISC07), Dec. 2007.

[7] Bhalerao, S., and Ingle, M., ”Mapping SDLC phase with Various Agile
Methods”, In Proceedings of International conference on Advances in
Computer Vision and information Technology, Nov. Aurangabad, pp. 318-
325.

[8] Cohn, M., and Ford, D., “Introducing an Agile Process to an
Organization”, In IEEE Computer Society 2003, pp.74-78.

[9] Cockburn, A., and Highsmith, J., “Agile Software Development: The
People Factor”, In Computer, Nov. 2001, pp. 131-133.
[10]Cockburn, A., Agile Software Development, Pearson Education,
Asia, Low Price Edition.

[11] Dingsøyr, T., Dybå, T., and Abrahamsson, P., ”A Preliminary Roadmap
for Empirical Research on Agile Software Development”, In Proceedings of
Agile Conference 2008

[12] Pressman, R., Software Engineering A Practitioner Guide, McGraw- Hill
6th Edition.

[13] Bhalerao, S., and Ingle, M., A Comparative Study of Agile Projects
Estimation using CAEA, In Proceedings of International Conference on
Computer Engineering and Application, June 2009, Philippines.

[14] Cao L. and Balasubramanium R., “ Agile Software Development: Ad-hoc
Practices or Sound Principles ?”, IEEE ITPRO, March- April 2007, pp. 41-46.

[15] Iacovelli A. and Souveyer C., “Framework for Agile Method
Classification”, Proceedings of Model Driven Information System Driven
Engineering- Enterprise, User and System Model (MoDISE –EUS) 2008, pp.
91-102.

AUTHORS PROFILE

Prof. S. Bhalerao is MCA from Banasthali Viyapeeth, Rajasthan and persuing

her research in standardization of agile methods to increase trust and
faith amongst practitioners under the guidance of Dr. M. Ingle
Professor, DAU, India. She has published more than 15 papers in
national and international confereces and journals. She got IT excellence
award for improving education standards in central India

Prof. D. Puntambekar is MCA from DAVV, Indore with about 20 years of

Industrial and Academic experience. He has published more than 25
research papers in national and internation Conferences. He is also
consultant to many Govt. agencies for E-Governance implementation.
He is being appointed as Director on the board of M.P. State Electronics
Development Corporation (MPSEDC) a State Govt. Enterprise.

Prof. M. Ingle is Ph. D in Computer Science. She is renowned Professor and

Senior System Analyst in a prestigious Devi Ahilya University (DAU),
Indore, India. She has published more 70 research papers in national and
international confereces and journal in area of software engineering,
Web Engineering, NLP and Usability Engineering etc. She has been
awarded for best teacher and imporving education standards in field of
IT in central India.

ISSN : 0975-3397

