
Ajita Satheesh et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 206-216

206

USE OF OBJECT-ORIENTED
CONCEPTS IN DATABASES FOR

EFFECTIVE MINING

 1Ajita Satheesh, 2Dr. Ravindra Patel,
1UIT, RGPV, Bhopal, MP,India 2UIT,RGPV, Bhopal, MP,India

 1ajitargpv@yahoo.co.in 2ravindra@rgtu.net

ABSTRACT-Data mining is a process that uses a
variety of data analysis tools to discover
knowledge, patterns and relationships in data that
may be used to make valid predictions. With the
popularity of object-oriented database systems in
database applications, it is important to study the
data mining methods for object-oriented databases.
The traditional Database Management Systems
(DBMSs) have limitations when handling complex
information and user defined data types which
could be addressed by incorporating Object-
oriented programming concepts into the existing
databases. Classification is a well-established data
mining task that has been extensively studied in the
fields of statistics, decision theory and machine
learning literature. This paper focuses on the
design of an object-oriented database, through
incorporation of object-oriented programming
concepts into existing relational databases. In the
design of the database, the object-oriented
programming concepts namely inheritance and
polymorphism are employed. The design of the
object-oriented database is done in such a well
equipped manner that the design itself aids in
efficient data mining. Our main objective is to
reduce the implementation overhead and the
memory space required for storage when
compared to the traditional databases.

Keywords: Data mining, Classification,
Relational Database Management System (RDBMS),
Object-Oriented Database (OODB), Object-Oriented
Programming (OOP).concepts, Inheritance,
Polymorphism, Generalization.

I. INTRODUCTION
In the modern computing world, the amount of
data generated and stored in databases of
organizations is vast and continuing to grow at a
rapid pace [1]. The data stored in these databases
possess valuable hidden knowledge. The
discovery of such knowledge can be very fruitful
for taking effective decisions. Thus the need for
developing methods for extracting knowledge
from data is quite evident. Data mining, a
promising approach to knowledge discovery, is
the use of pattern recognition technologies with

statistical and mathematical techniques for
discovering meaningful new correlations,
patterns and trends by analyzing large amounts
of data stored in repositories [2]. Data mining
has made its impact on many applications such
as marketing, customer relationship
management, engineering, medicine, crime
analysis, expert prediction, Web mining, and
mobile computing, among others [8]. In general,
data mining tasks can be classified into two
categories: Descriptive mining and Predictive
mining. Descriptive mining is the process of
extracting vital characteristics of data from
databases. Some of descriptive mining
techniques are Clustering, Association Rule
Mining and Sequential mining.

Predictive mining is the process of
deriving hidden patterns and trends from data to
make predictions. The predictive mining
techniques consist of a series of tasks namely
Classification, Regression and Deviation
detection [3], [4].One of the important tasks of
data mining is Data Classification which is the
process of finding a valuable set of models that
are self-descriptive and distinguishable data
classes or concepts, to predict the set of classes
with an unknown class label [13], [26]. For
example, in the transportation network, all
highways with the same structural and
behavioral properties can be classified as a class
highway [10]. From the application point of
view, Classification helps in credit approval,
product marketing, and medical diagnosis [27].
So many techniques such as decision trees,
neural networks, nearest neighbor methods and
rough set-based methods enable the creation of
classification models [11]. Regardless of the
potential effectiveness of data mining to
appreciably enhance data analysis, this
technology still to be a niche technology unless
an effort is taken to integrate data mining
technology with traditional database system [39].
Database systems offer a uniform framework for

ISSN : 0975-3397

Ajita Satheesh et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 206-216

207

data mining by proficiently administering large
datasets, integrating different data-types and
storing the discovered knowledge.

For over a decade, Relational databases
(RDB) has been the accepted solution for
efficient storage and retrieval of huge volumes of
data [37]. The RDBs are based on tables which
are static components of organizational
information. In addition to this, RDB can handle
only simple predefined data types and faces
problems when dealt with complex data types,
user defined data types and multimedia [23].
Thus, the RDB technology fails to handle the
needs of complex information systems [25].
Often the semantics of relational databases are
left unexplored within many relationships which
cannot be extracted without users’ help. Object-
Oriented databases (OODB) solve many of these
problems. Based on the concept of abstraction
and generalization, object oriented models
capture the semantics and complexity of the data.
[37]. Therefore, many research organizations are
employing object-oriented database (OODB) to
solve their problems of data storage, retrieval
and processing [18].

OODB is a database in which the
concepts of object-oriented languages are
utilized. The principal strength of OODB is its
ability to handle applications involving complex
and interrelated information [25]. But in the
current scenario, the existing object-oriented
database management system (OODBMS)
technologies are not efficient enough to compete
in the market with their relational counterparts.
Apart from that, there are numerous applications
built on existing relational database management
systems (RDBMS). It's difficult, if not
impossible, to move off those RDBs. Hence, we
intend to incorporate the object-oriented
concepts into the existing RDBMSs, thereby
exploiting the features of RDBMSs and OO
concepts. Undoubtedly, one of the significant
characteristic of object-oriented programming is
inheritance [5]. Inheritance is the concept by
which the variables and methods defined in the
parent class (super class) are automatically
inherited by its child class (sub class) [38]. There
are two ways to represent class relationships in
object-oriented programming and they are "is a"
and "has a" relationships. . In an “is-a”
relationship, an object of a sub class can also be
thought of as an object of its super class [36],
[17]. For instance, a class named Car exhibits an
"is a" relationship with a base class named
Vehicle, since a car is a vehicle.

In a "has-a" relationship which is also
known as composition [40], a class object holds
one or more object references as data members.
For example, a bicycle has a steering wheel and,
in the same way, a wheel has spokes [36].
Inheritance can also be stated as generalization,
because the “is-a” relationship represents a
hierarchy between the classes of objects [38]. In
generalization hierarchies, the data members and
methods of the super class are inherited by the
subclasses and the objects of the subclass can use
up those common properties of the super class
without redefinition [10]. For example, a "fruit"
is a generalization of "apple", "orange", "mango"
and many others. Similarly, one can consider
fruit to be an abstraction of apple, orange, etc.
Conversely, since apples are fruits (i.e., an apple
is-a fruit), apples are bound to contain all the
attributes common for a fruit. This concept of
generalization is very powerful, because it
reduces redundancy and maintains integrity [10].

Polymorphism is another important
Object oriented programming concept. It is a
general term which stands for ‘many forms’.
Polymorphism in brief can be defined as "one
interface, many implementations". It is a
property of being able to assign a different
meaning or usage to something in different
contexts – in particular, to allow an entity such
as a variable, a function, or an object to take
more than one form [12]. Polymorphism is
different from method overloading or method
overriding [40]. In literature (e.g., [41]),
polymorphism can be classified into three
different kinds namely: pure, static, and
dynamic. Pure polymorphism refers to a function
which can take parameters of several data types.
Static polymorphism can be stated as functions
and operators overloading. Dynamic
polymorphism is achieved by employing
inheritance and virtual functions. Dynamic
binding or runtime binding allows one to
substitute polymorphic objects for each other at
run-time. Polymorphism has a number of
advantages. Its chief advantage is that it
simplifies the definition of clients, as it allows
the client to substitute at run-time, an instance of
one class for another instance of a class that has
the same polymorphic interface [12].
It is becoming increasingly important to extend
the domain of study from relational database
systems to object-oriented database systems and
probe the knowledge discovery mechanisms in
object-oriented databases, because object-
oriented database systems have emerged as a
popular and influential setting in advanced

ISSN : 0975-3397

Ajita Satheesh et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 206-216

208

database applications. The fact that standards,
are still not defined for OODBMSs as those for
relational DBMSs and as most organizations
have their information systems based on a
relational DBMS technology, the incorporation
of the object oriented programming concepts into
the existing RDBMSs will be an ideal choice to
design a database that best suit the advanced
database applications.

A novel and innovative approach for the
design of an object-oriented database is
presented in this paper. The design of the OODB
is carried out in a proficient mode with the
intention of achieving efficient classification on
the database. In our proposed approach, we
utilize the object-oriented programming
concepts: inheritance and polymorphism to
achieve the above stated goals. Chiefly, we
extend the existing relational databases by
incorporating the object-oriented programming
concepts, to attain an object-oriented database.
The OODB is structured mainly by employing
the class hierarchies of inheritance. The
inheritance or the class relationships namely “is-
a” and “has-a” are used to represent a class
hierarchy in the proposed OODB. Another
object- oriented programming concept,
Polymorphism is utilized to achieve better
classification. Polymorphism enables the usage
of simple SQL queries to classify the designed
OODB. The experimental results stated, portrays
the efficiency of the proposed approach. The
designed OODB demands less implementation
overhead and saves considerable memory space
compared to RDBs while exploiting its essential
features.
The rest of the paper is organized as follows;
Section 2 gives a concise description about
OODB. In Section 3, the proposed approach to
the design of OODB for effective classification
is presented in detail. Section 4 summarizes the
results of our experiments and the conclusions
are summed up in Section 5.
II. OBJECT-ORIENTED DATABASE
(OODB)

The chief advantage of OODB is its
ability to represent real world concepts as data
models in an effective and presentable manner
[15]. OODB is optimized to support object-
oriented applications, different types of
structures including trees, composite objects and
complex data relationships. The OODB system
handles complex databases efficiently and it
allows the users to define a database, with
features for creating, altering, and dropping
tables and establishing constraints [18]. From the

user’s perception, OODB is just a collection of
objects and inter-relationships among objects
[14]. Those objects that resemble in properties
and behavior are organized into classes [16].
Every class is a container of a set of common
attributes and methods shared by similar objects.
The attributes or instance variables define the
properties of a class [9]. The method describes
the behavior of the objects associated with the
class [20]. A class/subclass hierarchy is used to
represent complex objects where attributes of an
object itself contains complex objects [26].

The most important object-oriented
concept employed in an OODB model includes
the inheritance mechanism and composite object
modeling [24]. In order to cope with the
increased complexity of the object-oriented
model, one can divide class features as follows:
simple attributes - attributes with scalar types;
complex attributes - attributes with complex
types, simple methods - methods accessing only
local class simple attributes; complex methods -
methods that return or refer instances of other
classes [19]. The object-oriented approach uses
two important abstraction principles for
structuring designs: classification and
generalization. Classification is defined as an
abstraction principle by which objects with
similar properties are grouped into classes
defining the structure and behavior of their
instances. Generalization is an abstraction
principle by which all the common properties
shared by several classes are organized into a
single super class to form a class hierarchy [7].

 From the very outset of the first
OODBMS Gemstone [21] in the mid-eighties, a
dozen other commercial OODBMSs have joined
the fierce competition in the market [22].
Regarding the applications of OODB, its vendors
have laid their focus on Computer Aided Design
(CAD), Computer Aided Manufacturing (CAM)
and Computer Aided Software Engineering
(CASE). All these user applications are meant to
handle complex information and the OODB
systems promises to propose efficient solutions
to these problems. Factory and office automation
are other application areas of object-oriented
database technology [25].
III. NEW APPROACH TO THE DESIGN
OF OBJECT ORIENTED DATABASE

In general literature, defines three
approaches to build an ODBMS: extending an
object-oriented programming language (OOPL),
extending a relational DBMS, and starting from
scratch .The first approach develops an ODBMS
by encompassing to an OOPL persistent storage

ISSN : 0975-3397

Ajita Satheesh et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 206-216

209

to achieve multiple concurrent accesses with
transaction support. The second is an extended
relational approach; an ODBMS is built by
incorporating an existing relational DBMS with
object-oriented features such as classes and
inheritances, methods and encapsulations,
polymorphism and complex objects. The third
approach aims to revolutionize the database
technology in the sense that an ODBMS is
designed from the ground up, as represented by
UniSQL and OpenODB . In our design, we
employ the second approach which extends the
relational databases by utilizing the OOP
concepts.

The proposed approach makes use of
the OOP concepts namely, inheritance and
polymorphism to design an OODB and perform
classification in it respectively. Normally,
database is a collection of tables. Hence when we
consider a database, it is bound to contain a
number of tables with common fields. In our
approach, we group together such common set of
fields to form a single generalized table. The
newly created table resembles the base class in
the inheritance hierarchy. This ability to
represent classes in hierarchy is one of the
eminent OOP concepts. Next we employ another

important object-oriented characteristic dynamic
polymorphism, where different classes have
methods of the same name and structure,
performing different operations based on the
calling object. The polymorphism is specifically
employed to achieve classification in a simple
and effective manner. The use of these object-
oriented concepts for the design of OODB
ensures that even complex queries can be
answered more efficiently. Particularly the data
mining task, classification can be achieved in an
effective manner.

Let T denote a set of all tables on a
database D and Tt ⊂ , where ‘t’ represents the
set of tables in which some fields are in
common. Now we create a generalized table
composing of all those common fields from the
table set ‘t’. To portray the efficiency of our
proposed approach, we consider a traditional
ERP package. An ERP database for large
business organizations will have a number of
tables but to best illustrate the OOP concepts
employed in our approach, we concentrate on
three tables namely, Employees, Suppliers and
Customers. The tables are represented in Figure
1.

Employees

E
m

pl
oy

ee

ID C
on

ta
ct

N

am
e

A
ge

G
en

d
er

M

ar
it

al

St
at

us

T
itl

e
T

itl
e

O
f

C
ou

rt

B
ir

th

D
at

e

H
ir

e
D

at
e

Pl
ac

e
ID

C
ity

R
eg

io
n Po

st
al

C

od
e

C
ou

nt
ry

H
om

e
Ph

on
e

E
xt

en
si

on

1 Priya 25 Femal
e

Marrie
d

Sales
Repres
entativ
e

Ms. 08-
Dec-
1984

01-
May-
2006

Shahp
ura

Bhopa
l

MP 462016 INDI
A

0755-
25609
41

5467

2 Sudee
p

37 Male Marrie
d

Vice
Presid
ent,
Sales

Dr. 19-
Feb-
1972

14-
Aug-
1996

Piplani Bhopa
l

MP 462021 INDI
A

0755-
27255
39

3457

(a)
Customers

C
us

to
m

er

ID

C
om

pa
ny

N

am
e

C
on

ta
ct

N

am
e

A
ge

G
en

de
r

M
ar

ita
l

St
at

us

B
ir

th
 D

at
e

C
on

ta
ct

T

itl
e

Pl
ac

e
ID

C
ity

R
eg

io
n

Po
st

al
 C

od
e

C
ou

nt
ry

H
om

e
Ph

on
e

Fa
x

1 Cadbur
y’s

Seema 22 Female Marrie
d

02-
Sep-
1987

Sales
Repres
entativ
e

Shahp
ura

Bhopal MP 46201
6

INDIA 0755-
27254
61

0755-
52867
54

2 Top’n
Town

Alka 24 Female Marrie
d

12-
Aug-
1985

Owner Piplani Bhopal MP 46202
1

INDIA 0755-
52345
67

0755-
52345
68

ISSN : 0975-3397

Ajita Satheesh et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 206-216

210

(b)

Suppliers
Su

pp
lie

r
ID

C

om
pa

ny

N
am

e
C

on
ta

c
t N

am
e

A
ge

G
en

de
r

M
ar

ita
l

St
at

us

B
ir

th

D
at

e

C
on

ta
c

t T
itl

e

Pl
ac

e
ID

C
ity

R
eg

io
n

Po
st

al

C
od

e

C
ou

nt
r

y Ph
on

e

Fa
x

H
om

e
Pa

ge

3 Cadb
ury’s

Sunita 33 Femal
e

Marri
ed

12-
Oct-
1976

Sales
Repre
sentati
ve

Piplan
i

Bhopa
l

MP 48104 INDI
A

0755-
25467
09

28 Top’n
Town

Sujata 43 Femal
e

Marri
ed

21-
May-
1967

Sales
Repre
sentati
ve

Shahp
ura

Bhopa
l

MP 74000 INDI
A

-755-
52345
67

(c)
Figure 1: Sample Tables in ERP database (a) Employees Table (b) Customers Table (c) Suppliers Table

The above set of tables namely Employees, Suppliers and Customers can be represented equivalently as
classes. The class structure may look like as in Figure 2.
Class Employees Class Suppliers Class Customer
Char Employee ID;
Char ContactName;
Int Age;
Char Gender;
Char Marital Status;
Char Title;
Char Title of Courtesy;
Char Birth Date;
Char Hire Date;
Char Place ID;
Char City;
Char Region;
Char Postal Code;
Char Country;
Char HomePhone;
Char Extension;

Char SupplierID;
Char CompanyName;
Char Name;
Int Age;
Char Gender;
Char MaritalStatus;
Char BirthDate;
Char ContactTitle;
Char PlaceId;
Char City;
Char Region;
Char PostalCode;
Char Country;
Char Phone;
Char Fax;
Char HomePage;

Char CustomerID;
Char CompanyName;
Char Name;
Int Age;
Char Gender;
Char MaritalStatus;
Char BirthDate;
Char ContactTitle;
Char PlaceId;
Char City;
Char Region;
Char PostalCode;
Char Country;
Char Phone;
Char Fax;

 Figure 2: Class Structure of Employees, Suppliers and Customers Table

From the above class structure, it is understood
that every table has a set of general or common
fields (highlighted ones) and table-specific
fields. On considering the Employee table, it has
general fields like Name, Age, Gender etc. and
table-specific fields like Title, HireDate etc.
These general fields occur repeatedly in most
tables. This causes redundancy and thereby
increases space complexity. Moreover, if a query
is given to retrieve a set of records for the whole
organization satisfying a particular rule, there
may be a need to search all the tables separately.
So, this replication of general fields in the table
leads to a poor design which affects effective
data classification. To perform better
classification, we design an OODB by
incorporating the inheritance concept of OOP.

A. DESIGN OF THE OODB

First in our proposed approach, we
design an OODB by utilizing the inheritance
concept of OOP by which we eliminate the
problem of redundancy. First, we locate all the
general or common fields from the table set ‘t’.
Then, all these general or common fields are
fetched and stored in a single table and all the
related tables can inherit it. Thus the generalized
table resembles the base class of the OOP
paradigm. In our approach, we create a new table
called ‘Person’, which contains all those
common fields and the other tables like
Employees, Customers inherit the Person table
without redefining it.

Here, we have used two important
mechanisms namely generalization and
composition. Generalization depicts an “is-a”
relation and composition represents an “has-a”
relation. Both these relationships can be best

Common
Attributes

ISSN : 0975-3397

Ajita Satheesh et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 206-216

211

illustrated as below: The generalized table
“Person” contains all the common fields and the
tables “Employees, Suppliers and Customers”
inheriting the table “Person” is said to have an
“is-a” relationship with the table Person i.e., an
Employee is a Person, A Supplier is a Person and
A Customer is a Person. Similarly to exemplify
the composition relation, the table Person
contains an object reference of the “Places” table

as its field. Then the table Person is said to have
an “has-a” relationship with the table Places i.e.,
a Person has a place and similarly, A Place has a
Postal Code.
Figure 3 represents the inheritance class
hierarchy of the proposed OODB design. In the
following pictured design, the small triangle
() represents “is-a” relationship and the
arrow (→) represents “has-a” relationship.

Figure 3: Inheritance hierarchy of classes in the proposed OODB design

The generalized table ‘Person’ is considered as
the base class ‘Person’ and the fields are
considered as the attributes of the base class
‘Person’. Therefore, the base class ‘Person’,
which contains all the common attributes, is
inherited by the other classes namely Employees,
Suppliers and Customers, which contain only the
specialized attributes. Moreover, inheritance
allows us to define the generalized methods in
the base class and specialized methods in the sub
classes. For example, if there is a need to get the

contact numbers of all the people associated with
the organization, we can define a method
getContactNumebrs() in the base class ‘Person’
and it can be shared by its subclasses. In
addition, the generalized class ‘Person’ exhibits
composition relationship with another two
classes ‘Places’ and ‘PostalCodes’. The class
‘Person’ uses instance variables, which are
object references of the classes ‘Places’ and
‘PostalCodes’. The tables in the proposed OODB
design are shown in Figure 4.

Persons
PersonID Contact Name Age Gender MaritalStatus Birth Date PlaceId Phone
1 Aradhna 42 Female Married 11-Mar-1967 Assam 0234-2725461
2 Susheela 24 Female Married 12-Aug-1985 Bombay 0423-5234567
3 Mitesh 23 Male Married 29-Apr-1986 Manipur 0688-2768879
4 Mohnish 41 Male Married 16-May-1968 Gwalior 0675-2546890

(a)

Employees

Employee ID Title Title Of Courtesy Hire Date Extension

37 Sales Representative Ms. 01-May-2006 5467

38 Vice President, Sales Dr. 14-Aug-1996 3457

ISSN : 0975-3397

Ajita Satheesh et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 206-216

212

Employees

Employee ID Title Title Of Courtesy Hire Date Extension

39 Sales Representative Ms. 01-Apr-2006 3355

(b)
Suppliers
Supplier ID Company Name Contact Title Fax Home Page
46 Toyota Purchasing Manager 0245-2678543
47 Top’n Town Order Administrator 0755-2765489
48 Cadbury’s Sales Representative 0675-5234786
49 Optel Marketing Manager 0755-2456034

(c)

Customers

Customer ID Company Name Contact Title Fax

1 Ashok Leyland Sales Associate

2 Top’n Town Owner

3 Hindustan Uniliver Ltd. Marketing Manager

(d)

 (e)
PostalCodes
PostalCode City Region Country
462001 Bhopal SE INDIA
429014 Indore CEN INDIA
234016 Agra NE INDIA
456234 Gwalior CEN INDIA

(f)
Figure 4: Structure of tables in the proposed OODB design (a) Persons (b) Employees (C) Suppliers (d)

Customers (e) Places (f) Postal Codes

Owing to the incorporation of inheritance
concept in the proposed design, we can extend
the database by effortlessly adding new tables,
merely by inheriting the common fields from the
generalized table.

B. DATA MINING IN THE
DESIGNED OODB
Dynamic polymorphism or late binding

allows us to define methods with the same name
in different classes and the method to be called is
decided at runtime based on the calling object.
This OOP concept and simple SQL queries can
be used to perform classification in the designed
OODB. Here, a single method can do the
classification process for all the tables. The

uniqueness of our concept is that the
classification process can be performed by using
simple SQL query while the existing
classification approaches for OODB employ
complex techniques such as decision trees,
neural networks, nearest neighbor methods and
more. We can also access the method,
specifically for individual entities namely
Employees, Suppliers and Customers. By
integrating the polymorphism concept, the code
is simpler to write and easier to manage. As a
result of the designed OODB, the task of
classification can be carried out effectively by
using simple SQL queries. Thus in our approach
by incorporating the OOP concepts for designing

Places

PlaceID Street PostalCode

Assam Dibrugarh 567012

Bombay Thane 230001

Bhopal Bairagarh 462016

Gwalior Mata Mandir 560015

ISSN : 0975-3397

Ajita Satheesh et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 206-216

213

the OODB, we exploit the maximum advantages
of OOP and also the task of classification is
performed more effectively.
IV. IMPLEMENTATION AND RESULTS

In this section, we have presented the
experimental results of our approach. The
proposed approach for the design of OODB and
classification has been programmed in JAVA
with MS Access as database. We have
considered only three tables for experimentation.
But in general, an organization may have a
number of tables to manage. Specifically, the
number of records is enormous in each table. The

incorporation of the OOP concepts to such
databases greatly reduced the implementation
overhead incurred. Moreover, the memory space
occupied is reduced to a great extent as the size
of the table increases. These are some of the
eminent benefits of the proposed approach. We
have performed a comparative analysis of the
space utilized before and after generalization of
tables and thus we have computed the saved
memory space. The comparison is performed
with varying number of records in the tables
such as 1000, 2000, 3000, 4000 and 5000 and the
results are stated below in Figure 5.

Normalized Un Normalized

 Tables Fields Records Total
Records of
Table

Memory
size of the
table

Fields Total Records
of the table

Memory
size of the
table

1 Customers 4 1000 4000 40000 15 15000 150000
2 Employees 5 1000 5000 50000 16 16000 160000

3 Suppliers 5 1000 5000 50000 16 16000 160000
4 Persons 8 3000 24000 240000
5 Places 3 500 1500 15000
6 Postalcodes 4 250 1000 10000

Total 40500 405000 47000 470000
Saved Memory (KB): 63.47656

Normalized Un Normalized
 Tables Fields Records Total Records

of Table
Memory size
of the table

Fields Total Records
of the table

Memory
size of the
table

1 Customers 4 2000 8000 80000 15 30000 300000

2 Employees 5 2000 10000 100000 16 32000 320000

3 Suppliers 5 2000 10000 100000 16 32000 320000

4 Persons 8 6000 48000 480000

5 Places 3 1000 3000 30000

6 Postal codes 4 500 2000 20000

Total 81000 810000 94000 940000

Saved Memory (KB): 126.9531

 Tables Fields Records Total
Records of
Table

Memory size
of the table

Fields Total
Records of
the table

Memory
size of the
table

1 Customers 4 3000 12000 120000 15 45000 450000
2 Employees 5 3000 15000 150000 16 48000 480000
3 Suppliers 5 3000 15000 150000 16 48000 480000
4 Persons 8 9000 72000 720000
5 Places 3 1500 4500 45000
6 Postal codes 4 750 3000 30000
 Total 121500 1215000 141000 1410000

Saved Memory (KB):190.4297

 Tables Fields Records Total
Records of
Table

Memory
size of the
table

Fields Total
Records of
the table

Memory
size of the
table

1 Customers 4 4000 16000 160000 15 60000 600000

ISSN : 0975-3397

Ajita Satheesh et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 206-216

214

2 Employees 5 4000 20000 200000 16 64000 640000

3 Suppliers 5 4000 20000 200000 16 64000 640000

4 Persons 8 12000 96000 960000

5 Places 3 2000 6000 60000

6 Postal codes 4 1000 4000 40000

 Total 162000 1620000 188000 1880000

Saved Memory (KB):253.9063

 Tables Fields Records Total
Records of
Table

Memory
size of the
table

Fields Total
Records of
the table

Memory
size of the
table

1 Customers 4 5000 20000 200000 15 75000 750000

2 Employees 5 5000 25000 250000 16 80000 800000

3 Suppliers 5 5000 25000 250000 16 80000 800000

4 Persons 8 15000 120000 1200000

5 Places 3 2500 7500 75000

6 Postal codes 4 1250 5000 50000

Total 202500 2025000 235000 2350000

Saved Memory (KB):317.3828
Figure 5: The results of comparative analysis

The graphical representation of the results is
illustrated in Figure 6. From the graph, it is clear

that the saved memory space increases, as the
number of records in each table increases.

0

50

100

150

200

250

300

350

1000 2000 3000 4000 5000

No. of Records

Sa
ve
d
m
em

or
y
sp
ac
e
(K
B)

Figure 6: Graph demonstrating the above evaluation results

Moreover in the proposed approach, we

have placed the common methods in the
generalized class and entity-specific methods in
the subclasses. Because of this design, we have
saved a considerable memory space. For
instance, in case of a traditional database if a
method getContactNumbers() is defined to get
the contact numbers, the method has to be
defined in all the classes and all those results are
to be combined to obtain the final result. But in
the proposed approach, we have generalized all
the classes, so the redefinition of methods for all
the related classes is not needed. If there are ‘n’
classes, placing the common methods in the base
class can save a memory space of

∑
=

−
m

i

th methodiofsizememoryn
1

)1(

Where ‘m’ is the number of common methods in
the super class.
V. CONCLUSION

Data mining has been gaining
tremendous interest and hence research on data
mining has mushroomed within the last few
decades. A promising approach for managing
complex information and user defined data types
is by incorporating object-orientation concepts
into relational database management systems. In
this paper, we have presented an approach for the
design of an object-oriented database and
performing classification effectively in it. The

ISSN : 0975-3397

Ajita Satheesh et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 206-216

215

Object oriented programming concepts such as
inheritance and polymorphism has been utilized
in the presented approach. Owing to this design
of OODB, an efficient classification task has
been achieved by utilizing simple SQL queries.
The experimental results have demonstrated the
effectiveness of the presented approach. Our
approach has successfully reduced the
implementation overhead incurred in the design
of an OODB. Our approach has also reduced the
amount of memory space inquired for storing
databases that grow in size.
REFERENCES
[1]. Satchidananda Dehuri, "Genetic Algorithms For Multi-

Criterion Classification And Clustering In Data Mining",
International journal of computing and information
sciences, Vol. 4, No. 3, pp. 143-154, 2006.

[2]. Jeffrey W. Seifert, "Data Mining: An Overview", CRS
Report for Congress, 2004.

[3]. J. Han, M. Kamber, “Data Mining: Concepts and
Techniques”, Morgan Kaufmann Publishers, 2001.

[4]. F. Coenen, Leng, P., Goulbourne, G., “Tree Structures
for Mining Association Rules,” Journal of Data Mining
and Knowledge Discovery, Vol. 15, pp. 391-398, 2004.

[5]. Ulrich Frank, "Delegation: An Important Concept for the
Appropriate Design of Object Models," Journal of
Object-Oriented Programming, Vol. 13, No. 3, pp. 13-
18, 2000.

[6]. J. Robin. “Inductive Object-Oriented Logic
Programming”, In Proceedings of the second workshop
on Implementation Technology for Computational Logic
Systems of the European Network of Excellence in
Computational Logic, pp.56-68, 2003

[7]. Georg Gottlob, Michael Schrefl and Brigitte Rock,
"Extending Object-Oriented Systems with Roles", ACM
Transactions on Information Systems, Vol. 14, No. 3, pp.
268–296, July 1996.

[8]. Hsinchun Chen, Sherrilynne S. Fuller, Carol Friedman,
and William Hersh, "Knowledge Management, Data
Mining, and Text Mining In Medical Informatics",
Chapter 1, pages: 3-34, Springer,2005.

[9]. Xue Li, "A Survey of Schema Evolution in Object-
Oriented Databases," Technology of Object-Oriented
Languages and Systems, pp. 362-371, Nanjing, China,
1999.

[10]. Babak Ameri Shahrabil, Wolfgang Kainz, "An
Implementation Approach for Object-oriented
Topographic Databases using Standard Tools," In
proceedings of Eleventh International Symposium on
Computer-Assisted Cartography, pp. 103-112, 30
October-1 November, Tehran, Iran, 1993.

[11]. Ahmed Sultan Al-Hegami, "Classical and Incremental
Classification in Data Mining Process," International
Journal of Computer Science and Network Security,
Vol. 7 No.12, 2007.

[12]. Claudia Pon, Luis Olsina, Máximo Prieto, "A Formal
Approach to Building a Polymorphism Metric in
Object-Oriented Systems," In proceedings of 4th
International ECOOP Workshop on Quantitative
Approaches, 2000.

[13]. Jing Zhong, Yan Fu and Jun-lin Zhou, "A
Classification Approach Based on Evolutionary Neural
Networks," International Journal of Computational
Intelligence Research, Vol.2, No. 1, pp. 72-75, 2006.

[14]. L. Yaolin, M. Molenaar and Ai Tinghua, “Frameworks
for Generalization Constraints and Operations Based
on Object-Oriented Data Structure in Database

Generalization," In Proceedings of the 20th
International Cartographic Conference, Vol. 3, pp.
2000-2012, Beijing, China, 2001.

[15]. Rajan John and Dr. V. Saravanan, "Vertical
Partitioning in Object Oriented Databases Using
Intelligent Agents," International Journal of Computer
Science and Network Security, Vol.8, No.10, 2008.

[16]. Sikha Bagui, “Achievements and Weaknesses of
Object-Oriented Databases," Journal of Object
Technology, Vol. 2, No. 4, pp. 29-41, 2003.

[17]. Woochun Jun and Le Gruenwald, “A Class Hierarchy
Concurrency Control Technique in Object-Oriented
Database Systems,” In proceedings of the 3rd Joint
Conference of Information Sciences, pp. 293-296,
March 1997.

[18]. Kelly Nunn-Clark, Lachlan Hunt, Teo Meng Hooi and
Balachandran Gnanasekaraiyer, “Problems of Storing
Advanced Data Abstraction in Databases,” In
Proceedings of the First Australian Undergraduate
Students’ Computing Conference, pp. 59-64, 2003.

[19]. A.S. Darabant, "A New Approach In Fragmentation
Of Distributed Object Oriented Databases Using
Clustering Techniques," Studia Univ. babes, Vol. L,
No. 2, 2005.

[20]. M.B.Thuraisingham, "Mandatory Security in Object-
Oriented Database Systems," In Proceedings of the 4th
International Conference on Object-Oriented
Programming Systems, Languages, and Applications,
pp. 203–210, October 1989.

[21]. “Gemstone Database Management System” from
http://www.gemstone.com/.

[22]. J. Blakeley, “Object-oriented database management
systems,” Tutorial at SIGMOD, Minneapolis, MN,
May 1994.

[23]. Neal Leavitt, "Whatever Happened to Object-Oriented
Databases?" IEEE Computer Society, Vol. 33, No. 8,
pp. 16-19, 2000.

[24]. Shermann Sze-Man Chan, and Qing Li, "Supporting
Spatio-Temporal Reasoning in an object-Oriented
Video Database System", 1999.

[25]. Mansaf Alam, Siri Krishan Wasan, "Migration from
Relational Database into Object Oriented Database,”
Journal of Computer Science, Vol. 2, No. 10, pp. 781-
784, 2006.

[26]. Kitsana Waiyamai, Chidchanok Songsiri and
Thanawin Rakthanmanon, "Object-Oriented Database
Mining: Use of Object Oriented Concepts for
Improving Data Classification Technique", Lecture
Notes in Computer Science, Vol: 3036, pp: 303-309,
2004.

[27]. Micheline Kamber, Lara Winstone, Wan Gong, Shan
Cheng and Jiawei Han, "Generalization and Decision
Tree Induction: Efficient Classification in Data
Mining,” In Proceedings of International Workshop
Research Issues on Data Engineering, pp. 111-120, 7-8
April, Birmingham, UK, 1997.

[28]. Linna Li, Bingru Yang, Faguo Zhou, "A Framework
for Object-Oriented Data Mining", In proceedings of
fifth International Conference on Fuzzy Systems and
Knowledge Discovery, Vol: 2, pp: 60-64, 2008.

[29]. Al-Jadir. L., "Encapsulating classification in an
OODBMS for data mining applications", in
Proceedings of the Seventh International Conference
on Database Systems for Advanced Applications,
pp:100-106, China, 2001.

[30]. Vladimir Novacek, "Data Mining Query Language for
Object-Oriented Database", Lecture Notes in
Computer Science, Vol: 1475, February 19 1998.

[31]. Jiawei Han, Shojiro Nishio, Hiroyuki Kawano, Wei
Wang, "Generalization-based data mining in object-

ISSN : 0975-3397

Ajita Satheesh et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 206-216

216

oriented databases using an object-cube model", Data
and Knowledge Engineering, vol:25, pp:1-2, 1998.

[32]. Lina Al-Jadir, "Integrating Association Rule Mining
Algorithms with the F2 OODBMS", Lecture Notes in
Computer Science, vol: 2736, pp: 724-736, 2003.

[33]. Beat Wuthrich, Kamalakar Karlapalem, "Data Mining
Opportunities in Very Large Object Oriented
Databases," ACM-SIGMOD workshop on Research
Issues on Data Mining, 1996.

[34]. [Dai, H. "An object-oriented approach to schema
integration and data mining in multiple databases",
Technology of Object-Oriented Languages, pp: 294 -
303, 1997.

[35]. Erik Odberg, "Category Classes: Flexible
Classification and Evolution in Object-Oriented
Databases", Lecture Notes in Computer Science, Vol:
811, pp: 406-420, 1994.

[36]. Harvey Deitel and Paul Deitel, "Java™ How to
Program", Prentice Hall, Fifth Edition, 2003.

[37]. Joseph Fong, “Converting Relational to Object-
Oriented Databases,” SIGMOD Record 1997, Vol. 26,
No. 1, 1997.

[38]. B.G. Geetha, V. Palanisamy, K. Duraiswamy and G.
Singaravel, "A Tool for Testing of Inheritance Related
Bugs in Object Oriented Software," Journal of
Computer Science, Vol. 4, No. 1, pp. 59-65, 2008.

[39]. Amir Netz, Surajit Chaudhuri, Jeff Bernhardt, Usama
Fayyad, "Integration of Data Mining and Relational
Databases," In Proceedings of the 26th International
Conference on Very Large Databases, pp. 719-722,
Cairo, Egypt, 2000.

[40]. Sierra, Kathy; Bert Bates (2005). Head First Java, 2nd
Ed.. O'Reilly Media, Inc.. ISBN 0596009208.

[41]. Benlarbi, S. and Melo, W. Polymorphism measures
for early risk prediction, In International Conference
of Software Engineering (ICSE’99), Los Angeles, CA,

ISSN : 0975-3397

