
CH.V.M.K. Hari. et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 142-147

142

Identifying the Importance of Software Reuse in
COCOMO81, COCOMOII.

CH.V.M.K.Hari#1 Prof. Prasad Reddy P.V.G.D$2 J.N.V.R Swarup Kumar*3 G.SriRamGanesh*3
 #1Associate Professor, Dept of IT, Gitam University, Visakhapatnam, India, kurmahari@gmail.com.
 $2 Dept.of CS & SE, Andhra University, Visakhapatnam, India. prof.prasadreddy@gmail.com

*3 Dept. of IT, Gitam University, Visakhapatnam, India,
swarupjnvr@yahoo.co.in, sriramganesh_g@yahoo.co.in.

Abstract- Software project management is an interpolation of
project planning, project monitoring and project termination.
The substratal goals of planning are to scout for the future, to
diagnose the attributes that are essentially done for the
consummation of the project successfully, animate the scheduling
and allocate resources for the attributes. Software cost estimation
is a vital role in preeminent software project decisions such as
resource allocation and bidding. This paper articulates the
conventional overview of software cost estimation modus
operandi available. The cost, effort estimates of software projects
done by the various companies are congregated, the results are
segregated with the present cost models and the MRE (Mean
Relative Error) is enumerated. We have administered the
historical data to COCOMO 81, COCOMOII model and
identified that the stellar predicament is that no cost model gives
the exact estimate of a software project. This is due to the fact
that a lot of productivity factors are not contemplated in
estimation process. The vital dilemma we identified is that
“software reuse” is being eclipsed although most of the
contemporary software projects are based on object oriented
development where no component is made from scratch
(Inheritance). By using the principal of software reuse the ROI
(Return of Investment) is also bolstered for the companies. So
further research exposure is in “software Reuse” and Reuse
software cost estimation model.

Keywords- Reuse, Size, Effort, Cost estimation, COCOMO, MRE.

I. INTRODUCTION
The concept of software cost estimation has been growing
rapidly due to practically and demand for it. Today the people
expecting high quality of software with a low cost that is goal
of software engineering. So many popular cost estimation
models like COCOMO81, COCOMOII, SLIM, FP and
Delphi. These models created by taking historical data applied
to regression analysis. A recent review of surveys on software
cost estimation found that of software projects have cost
overruns. Today most of the software companies follow
COCOMOII for estimating the cost of products; we found
some variations in this model [11]. These are several reasons
like “unrealistic over-optimum”, “complexity”, “and
overlooked tasks” [9]. The reason we identified are the people
are developing the projects by using Object Oriented
Technologies with the principle of “software Reuse”. This
paper we are present some popular software cost estimation
models and applied sample data to models and calculated the
MRE. In section2 deals with the overview of the cost
estimation models. In section5 deals with the calculation by
using COCOMO81, COCOMOII and comparison graphs for

COCOMO models.
The contribution of this paper predicts the

importance the “Software Reuse”. Cost Estimation process is
an uncertain activity because of inaccurate information and
future needs are not known in advance.

II. BACKGROUND
A review of the literature tells the most interesting difference
between estimated effort and original effort, estimation
models that use KDLOC (Thousands of Delivered Lines of
Code) as the primary input. This input is not sufficient for
accurately estimating the cost of products. Several other
parameters have to be considered. We examine the
COCOMO81, COCOMOII models. After examining these
models we found some variations in these models. We
identified the large scale reuse offered by product line
engineering promises a best productivity and time-to-market.

A. Single variable method
Software cost estimation is the method for analyzing and
predicting the amount of effort required to build a software
system. A traditional approach to estimate effort of software
creation and development is to make the effort as the function
of a single variable. The variable which we use in this model
is project size [4].
 Effort= a*sizeb

Where effort is in person-months, a & b are constants
determined by regression analysis applied on historical data.

B. COCOMO81 Model
Boehm described COCOMO as a collection of three variants:
basic model, intermediate model, detailed model [12].

1) Basic model
The basic COCOMO model computes effort as function of
program size, and it is same as single variable method.
 Effort =a*sizeb

Where a and b are the set of values depending on the
complexity of software. For the organic type of projects a=2.4,
b=1.05, semi-detached type of projects a=3.0, b=1.12,
Embedded type of projects a=3.6, b=1.2.

2) Intermediate model
An intermediate COCOMO model effort is calculated using a
function of program size and set of cost drivers or effort

ISSN : 0975-3397

CH.V.M.K. Hari. et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 142-147

143

multipliers.
 Effort = (a*sizeb)*EAF
where a and b are the set of values depending on the
complexity of software and EAF (Effort Adjustment Factor)
which is calculated using 15 cost drivers [12]. Each cost
driver is rated from ordinal scale ranging from low to high.
For the organic type of projects a=3.2, b=1.05, semi-detached
type of projects a=3.0, b=1.12, Embedded type of projects
a=2.8, b=1.2.

3) Detailed model
In detailed COCOMO the effort is calculated as function of
program size and a set of cost drivers given according to each
phase of software life cycle. The phases used in detailed
COCOMO are requirements planning and product design,
detailed design, code and unit test, and integration testing.
 Effort = (a*sizeb)*EAF*sum(Wi).
The weights of life cycle model are described in [12]. The life
cycle activities like requirement planning, system design,
detailed design, code and unit testing, integration and testing.
In all above three models the factors a and b are depend on the
development mode.

C. COCOMO II Model
Boehm and his colleagues have refined and updated
COCOMO called as COCOMO II.
This consists of application composition model, early design
model, post architecture model.

1) The Application Composition Model
It uses object points for sizing rather than the size of the code.
The initial size measure is determined by counting the number
of screens, reports and the third generation components that
will be used in application.
 Effort = NOP/PROD
Where NOP (New Object Points) = (object points)*(100-
%reuse)/100, PROD (Productivity Rate)=NOP/PersonMonths

2) The Early Design Model
It uses to evaluate alternative software system architectures
where unadjusted function point is used for sizing.
 Effort = a*KLOC*EAF
Where a is set to 2.45, EAF is calculated as in original
COCOMO model using seven cost drivers (RCPX, RUSE,
PDIF, PERS, PREX, FCIL, SCED) [12]. RUSE: Reuse is
consider as one factor, but it is a major factor for effort
estimation.

3) The Post Architecture Model
It is used during the actual development and maintenance of a
product. The post architecture model includes a set of 17 cost
drivers [12] and a set of 5 factors determining the projects
scaling component.
 Effort=(a*sizeb)*EAF
Where a=2.55 and b is calculated as b=1.01+0.01*SUM(wi),
wi= sum of weighted factors.

D. SLIM Model
Larry Putnam of Quantitative Software Management
developed The Software Lifecycle Model (SLIM) in 1970's
[1,2,11]. SLIM is based on the concept of Norden-Rayleigh
curve which represents manpower as a function of time. The
software equation for SLIM is defined as follows:
 S = E*(Effort)1/3 *td4/3

Where td is the software delivery time, E is the environment
factor that reflects the development capability, which can be
derived from historical data using the software equation. The
size S is in LOC and the Effort is in person-year. Another
important relation is

Effort = D0*td3

Where D0 is a parameter called manpower build-up which
ranges from 8 (entirely new software with many interfaces) to
27 (rebuilt software). Combining the above equation with the
software equation, we obtain the power function form:

Effort = (D0
4/7*E-9/7)*S9/7 and

td =(D0 -1/7*E-3/7)*S3/7

SLIM is widely used in practice for large projects (more than
70 KDLOC) and SLIM is a software tool based on this model
for cost estimation and manpower scheduling.

E. Function Point Analysis (FP)
 It is one of the major techniques used for software
cost estimation. It was introduced by Albertch [11].

The general approach that FPA follows is

• Count the number of inputs, outputs, inquiries,
master files, and interfaces required, then calculate the
Unadjusted Function Points (UFP)

• Calculate the adjusted function point (AFP) by
multiplying these counts by an adjustment factor; the UFP
and the product complexity adjustment.

• Calculate the Source Lines of Code (SLOC) with the
help of the AFP and the Language Factor (LF).

The FPA measures functionality that the user requires like the
number of inputs, outputs, inquiries, master files, and
interfaces required. The specific user functionality is a
measurement of the performance delivered by the application
as per the request of the user. For each function identified
above the function is further classified as simple, average or
complex and a weight are given to each. The sum of the
weights quantifies the size of information processing and is
referred to as the Unadjusted Function points. The function
types and the weighting factors for the varying complexities
[11].

To calculate the Complexity adjustment value,
several factors have to be considered, such as Backup and
recovery, code design for reuse, etc. All the factors and their
estimated values in this project are already available. The
adjusted function point denoted by FP is given by the formula:

ISSN : 0975-3397

CH.V.M.K. Hari. et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 142-147

144

FP = total UFP*(0.65 + (0.01 *Total complexity adjustment
value)) or
FP =total UFP *(Complexity adjustment factor)

Total complexity adjustment value is counted based on
responses to questions called complexity weighting factors
[11,12]. Each complexity weighting factor is assigned a value
(complexity adjustment value) that ranges between 0 (not
important) to 5 (absolutely essential).

F. Delphi model
This model also known as an expert judgment model, this
model has been followed by most of the software companies
that we have observed in literature survey. A meeting has been
conducted for the experts and predicting the requirements
about the project and collect the estimations from all experts
and distribute to all of them for discussion and finally and the
cost is determined by the following formula

Estimation=(leastestimation+4*avgestimation+highestimation
)/6

III. RESEARCH QUESTIONS
This copious study of software cost estimation ruminates
contemporary cost estimation models and tries to contemplate
on the differences that prevail between original effort and
calculated effort. It also considers manifold cases and
tabularizes them in an elucidatory manner. The main models
that we scrutinize are the COCOMO, Function Point model
and SLIM.

Q1: Why does a discrepancy arise between the original effort
and calculated effort? What are the factors that are being
precluded by the user while gauging the cost?

Q2: Which factor portrays a vital role in software
development and would reduce the difference between actual
effort and calculated effort?

IV. SURVEY METHOD
This research has progressed by excogitating on the famous
cost estimation models in hope of unveiling the different ways
of guesstimating the cost for a software project. The formulae
from the various books, web and journals have been
congregated and also historical data from past projects has
been collected. The parameters which have been deliberated
are based on regression analysis of the different models. We
have amassed data from 30 projects [11,23,24] done by
renowned companies and this data has been exercised on all
the models and MRE has been calculated. This exhibits a lot
of difference between actual effort and calculated effort in
various models. Based on our astute observation there is no
commodious cost estimation model that dispenses with
manifold projects. We have visited personnel working with
acclaimed organizations and enquired them in order to find
evidence and most companies follow expert judgment for
determining the cost of the product. Some have admitted that

they use a lot of software tools for developing the product and
construct programs from existing libraries.

V. PRELIMINARY RESULTS AND FUTURE RESEARCH
(PERFORMANCE OF ESTIMATION MODELS)

TABLE I
COCOMO81 Basic Model

Fig. 1 shows COCOMO81 Basic model graph. Original effort
is below for all the possibilities of calculated effort.

TABLE II
COCOMO81 Intermediate Model with nominal values

ISSN : 0975-3397

CH.V.M.K. Hari. et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 142-147

145

Fig. 2 shows COCOMO81 Intermediate model graph with
nominal values.

TABLE III
COCOMO81 Intermediate Model with High values

Fig. 3 shows COCOMO81 Intermediate model graph with
High values.

TABLE IV

COCOMO81 Detailed Model with nominal values

Fig. 4 shows COCOMO81 Detailed model graph with
nominal values.

TABLE V
COCOMO81 Detailed Model with High values

ISSN : 0975-3397

CH.V.M.K. Hari. et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 142-147

146

Fig. 5 shows COCOMO81 Detailed model graph with High
values.

TABLE VI
COCOMOII Early Design Model

Fig. 6 shows graph for COCOMOII Early Design model.

TABLE VII

COCOMOII Post Architecture Model

Fig. 7

Fig. 7 shows COCOMOII Post Architecture model graph.

Similarly the variations are found in SLIM, FP model. [11]

VI. DISCUSSION AND FUTURE WORK
This research would emphasize on the salience of software
reuse principles in cognition with software cost estimation.
Also we try to articulate the multifarious ways in which
software reuse aids the cause of cost estimation. We are
speculating on devising a cost estimation model which
highlights the preponderance of reuse and else reduce the
MRE. We are also trying to peg the different forms of reuse to
reduce cost and MRE.

VII. CONCLUSION
This work on Software Cost Estimation explores
contemporary cost estimation models and different ways of
guesstimating the cost. It compares COCOMOII which has
been widely used over the past years. Also it ponders over the
other models SLIM, Function Point Model and Delphi which
have had profound influence especially in practice.
Furthermore it attempts to put forth the gist of software reuse
for future use.

ISSN : 0975-3397

CH.V.M.K. Hari. et al /International Journal on Computer Science and Engineering Vol.1(3), 2009, 142-147

147

REFERENCES

[1] Putnam. L.H. General empirical solution to the
macro software sizing and estimating problem. IEEE
Trans. Soffw. Eng. SE 4, 4 (July1978, 345-361).

[2] Putnam. L.. and Fitzsimmons, A. Estimating software
costs. Datamation 25, lo-12 (Sept.-Nov. 1979).

[3] Lionel C.Briand, Khaled EI Emam, Frank Bomarius,
”COBRA: A Hybrid Method for software Cost
Estimation, Benchmarking, and Risk asserssment”,
International Software Engineering Research
Network Technical Report ISERN-97-24 (Revision
2)

[4] An Integrated Approach for Software Engineering.
Pankaj jalote

[5] Software engineering (3rd Edition), New age
International publishers, k.k Aggarwal, yogesh singh,
ISBN-(13): 978-81-224-2360-0.

[6] Sana Ben Abdallah Ben Lamine, Lamia Labed Jilani,
Henda Hajjami Ben Ghezala, Laboratoire Riadi Gdl,
Ecole Nationale des sciences de l’Informatique
campus Universitaire la Manouba, La Manouba,
2010, Tunisia. “A Software Cost Estimation Model
for a Product Line Engineering Approach:
Supporting tool and UML Modelling. (SERA’05).

[7] Tanja Gruschke, University of Oslo,” Empirical
studies of Software Cost Estimation: Training of
Effort Estimation Uncertainty Assessment Skills”,
11th IEEE International Software Metrics Symposium
(METRICS’05).

[8] Nasser Tadayon, Dept of Computer and Software
Engineering, Embry Riddle Aeronautical University,
“ Neural Network Approach for Software Cost
Estimation, (ITCC’05).

[9] Magne Jorgensen, Stein Grimstad, Simula Research
Laboratory, Norway, “Over-Optimism in Software
Development Projects: “The Winner’s Curse”,
(CONIELECOMP-2005).

[10] Kjetil Molokken-Ostvold, Member, IEEE, and
Magne Jorgensen, “ A Comparison of Software
Project Overruns-Flexible Versus Sequential
Development Models, IEEE Transactions on
Software Engineering,VOL.31, No.9, Sep-2005.

[11] Robert W. Zmud. An Empirical Validation of
Software Cost Estimation Models. Chris F.Kemerer,
May 1987 Volume 30 Number 5.

[12] Kim Johnson, Dept Of Computer Science, University
of Calgary, Alberta, Canada, “Software Cost
Estimation: Metrics and Models” (pages 1 to 17).

[13] Hareton Leung, Zhang Fan, Dept of Computing, The
Hong Kong Polytechnic University, “ Software Cost
Estimation “.

[14] Boehm B.W (1981). Software Engineering
Economics. Prentice Hall.

[15] Boehm B.W., Abts, C.,Clark,B., and Devnani-
chulani.S.(1997). COCOMO II Model Definition
Manual. The University Of South California.

[16] Fenton, N.E. and Pfleeger, S.L. (1997). “Software
Metrics : A Rigorous and Practical Approach.
International Thomson Computer Press.

[17] Humphrey, W.S. (1990), “ Managing The Software
Process. Addison-Wesley Publishing Company.

[18] Jones, C. (1996). “Applied Software Measurement”
McGraw Hill.

[19] Park, R. (1992). “Software Size Measurement: A
Framework For Counting Source Lines of Code”,
Software Engineering Technical Report.

[20] Pillai, K.and Sukumaran Nair, V.S.(1997) “A model
for Software Development Effort and Cost
Estimation”, IEEE Transactions on Software
Engineering 23(8) 485-497.

[21] Pressman, R.S (1997), “Software Engineering A
Practitioner’s Approach” McGraw Hill.

[22] Shaw, M.(1995), “Cost And Effort Estimation.”
CPSC451 Lecture Notes. The University of Calgary.

[23] Dr Anthony L Rollo, Software Measurement
Services Ltd, “Functional Size measurement and
COCOMO – A synergistic approach”.

[24] Maurizio Morisio, Ioannis Stamelos, Daniele
Romano, Corrado Moiso, “Framework Based
Software Development: Learning as an Investment
Factor”.

c

ISSN : 0975-3397

