
Bremananth R et al /International Journal on Computer Science and Engineering Vol.1(2), 2009, 81-88

81

Abstract—The dynamic software development organizations
optimize the usage of resources to deliver the products in the
specified time with the fulfilled requirements. This requires
prevention or repairing of the faults as quick as possible. In
this paper an approach for predicting the run-time errors in
java is introduced. The paper is concerned with faults due to
inheritance and violation of java constraints. The proposed
fault prediction model is designed to separate the faulty classes
in the field of software testing. Separated faulty classes are
classified according to the fault occurring in the specific class.
The results are papered by clustering the faults in the class.
This model can be used for predicting software reliability.

Keywords— Clustering faults, Inconsistent Type Usage
(ITU), Illicit file usage, Spaghetti.

I. INTRODUCTION

he programs written using object-oriented languages
may have data flow anomalies and faults. Occasionally

one of these faults manifests a failure, and corrective
measures are then usually taken to eliminate the fault. The
traditional testing techniques that are available primarily
focus on the syntactic and semantic error constructs. The
other constructs which lead to an incorrect output is due to
the fault that occurs during run-time. Our paper takes these
types of errors into consideration and errors are predicted
during the compilation time, reducing the errors during the
run-time.
The errors are taken as metrics to predict fault classes.
 The metrics considered are:
 1. Spaghetti Error
 2. Inconsistent Type Usage error
 3. Lvalue required
 4. Undefined loop Exception
 5. Illicit File Usage Exception
 6. Incorrect inheritance

A. Proposed System

 The preliminary work done by us is to develop a
new compiler which is used to test the classes for the
above specified metrices and the faulty classes are
displayed along with their metrices. The faults are
clustered with the common type of errors occurring in it

 Bremananth R is Professor with Dept. of Computer Applications, Sri
Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India-
641008(91-422-2461588,2460088, e-mail: bremresearch@gmail.com).

Thushara R is a research student with Dept. of Computer Technology,
Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India.(e-
mail: ct.thushara@gmail.com).

and the output is displayed according to the cluster of the
errors that have occurred in the tested classes.

II METHODOLOGY

 The experiment has been carried out using 20 Java

classes from different sources and all the classes are
measured with 6 metrics. For this, a compiler is generated
for the above specified metrices. The compiler compiles
the source code and separates the faulty classes containing
the errors along with the class name [1].

A Spaghetti Error
 The error has derived its name from catering science
representing a cup of noodles. A cup of noodles remain in
an attached format, such that each one is extended with the
other. Similarly in multilevel inheritance the derived class
is inherited from the base class. Multilevel inheritance is
not an error in java but when the inheritance level reaches
six or more than six, it leads to a run time anomaly.
Figure1 is an example of multilevel inheritance, where
A.Java is the super class of the inheritance level for which
B.java is a descendant class which in turn is inherited by
the class C.java class.

Fig. 1 Illustration of spaghetti error

C.java is base class for the class D.java which serves as
the base class of E.java. E.java class is inherited by the class
F.java. When the class G.java extends F.java class it leads
to an anomaly in the inherited level (as the inheritance level
reaches six). Result of spaghetti error is illustrated in
figure2.

Bremananth R and Thushara R

Fault Predictions in Object Oriented Software

T

Multilevel inheritance (MLI) 1
public class ML_A
{
 ML_A()
 {
 System.out.print("Welcome to ML_A");
 }}
// MLI 2 , MLI 3 , MLI 4 , MLI 5……
class ML_G extends ML_F
{
 ML_G()
 {
 System.out.print("Welcome to ML_G");
 }
 public static void main(String arg[])
 {
 ML_G mlf = new ML_G();
 }}

ISSN : 0975-3397

Bremananth R et al /International Journal on Computer Science and Engineering Vol.1(2), 2009, 81-88

82

Fig. 2 Output of Spaghetti error

B Inconsistent Type Usage error (ITU)

For this fault type [2], a descendant class does not
override any inherited method. Thus, there can be no
polymorphic behavior. Every instance of a descendant class
that is used where an instance of base class is expected can
only behave exactly like an instance of base class. That is,
only methods of base class can be used. Any additional
methods specified in base class are hidden since the
instance of derived class is being used as if it is an instance
of base class. However, anomalous behavior is still
possible. If an instance of descendant class is used in
multiple contexts anomalous behavior can occur if derived
class has extension methods. In this case, one or more of
the extension methods can call a method of base class or
directly define a state variable inherited from base class.
Anomalous behavior will occur if either of these actions
results in an inconsistent inherited state. Figure 3 is an
example illustrating the error Inconsistent Type Usage
(ITU). In this program stack is a derived class of vector. g()
is a function which expects vector as its argument type. But
in the above example stack object s is passed where the
vector instance v is required. This is syntactically correct
because an instance of stack is also an instance of vector.

 Fig. 3 Illustration of ITU error

The problem begins at line 21 where the last element of s is
removed. The fault is manifested when control returns and
reaches the first call to stack::pop () at line 14. Here, the
element removed from the stack is not the last element that
was added, thus the stack integrity constraint will be
violated. Hence the result of the software class will be
affected. Result of ITU error is illustrated in figure4.

Fig. 4 Output of ITU error

C Lvalue required

Comparing of two strings in java can be done by using the

.(dot) equals operation. But this condition is violated when
the operator == is used to check whether the strings are
equal. This is never specified as a fault in java, even though
the constraint is violated. Hence our module deals with this
constraint specifying that the use of ==operator to equal two
strings is illegal. An example program for Lvalue required,
given in figure 5 has two string variables d and e. The use of
==operator in the line 8, is against the rules and hence the
error message is displayed as Lvalue required.

Fig. 5 Occurrence of Lvalue required error

 Result for Lvalue required is illustrated in figure 6.

1 class A
2 {
3 int a, b, c,x;
4 String d="WEL";
5 String e="WEL";
6 public void A_a()
7 {
8 if(d==e)
9 {
10 }
11 System.out.println("Class A called");
12 }}

ISSN : 0975-3397

Bremananth R et al /International Journal on Computer Science and Engineering Vol.1(2), 2009, 81-88

83

 Fig. 6 Output for Lvalue

D Undefined loop exception

As the name specifies this error is nothing but a dummy
loop. If we use any undefined loop java compiler does not
consider this as an error. Our module will consider this as
error while at compilation time. In figure7, there is a dummy
do while loop which is of no use. Just the loop goes on and
on. Hence this is specified as an error by our compiler.

 Fig. 7 Illustration of undefined loop exception

Result of undefined loop exception is illustrated in figure
8.

Fig. 8 Output for Undefined loop exception

E Illicit file usage exception

 Illicit means improper. The proper way of using the files
in java is that all the opened files must be closed before it is
used again. But java compiler does not specify this error
but it will generate some technical error dynamically. Our
compiler detects this fault and specifies that the specific
file which is opened is not closed. Figure 9 is an example
in which two files file _output and data_out opened. But
only the file_output file is closed in the line 16 and the file
data_out remain unclosed.

Fig. 9 Illustration of illicit file usage exception

The unclosed file leads to a dynamic error during
execution when the file is tried to open again. The result of
illicit file usage exception is displayed as in figure 10.

 Fig. 10 Output of illicit file usage exception

1 class A
2 {
3 int a, b, c,x;
4 public void A_a()
5 {
6 if(a>4)
7 {
8 a--;
9 }
10 do
11 {
12 }while(a>10);
13 }}

1 class loopa
2 {
3 loopa ()
4 {
5 int a=0;
6 int i=0;
7 try
8 {
9 FileOutputStream file_output=new
FileOutputStream(file);
10 DataOutputStream data_out=new
DataOutputStream(file_output);
11 for (i = 0;i < 10;i++)
12 {
13 data_out.writeInt(i);
14 data_out.writeDouble(i);
15 }
16 file_output.close();
17 }
18 catch (IOException e)
19 {
20 System.out.println("IO exception: " + e);
21 }}}

ISSN : 0975-3397

Bremananth R et al /International Journal on Computer Science and Engineering Vol.1(2), 2009, 81-88

84

A.java B.java

C.java

F Incorrect Inheritance

The name itself specifies that the inheritance is not right.
The type of inheritance that is incorrect in java is the
multiple inheritance, which is replaced with the interfaces.
Though java does not support multiple inheritance it does
not show a bug that the fault occurring is due to the usage of
the incorrect inheritance (i.e.) multiple inheritance. It just
gives a syntax error as “{expected”. But our module exactly
specifies that the error is due to the usage of the incorrect
inheritance. Figure11 is an example in which C.Java inherits
two classes B.java and A.java. Since a single class inherits
two classes, it leads to incorrect inheritance.

(Base classes)

 (Derived class)

Fig. 11: Illustration of Incorrect Inheritance error

 Result of incorrect inheritance error is illustrated in
figure12.

Fig. 12 Output of incorrect inheritance

IV IMPLEMENTATION AND RESULT ANALYSIS

 Our module allows the user to input a folder which

contains the classes to be tested. On loading the folder the
selected classes to be tested present inside the folder are fed
to the source code one by one which monitors for the
occurrence of error. The errors are monitored based on the
six metrics specified earlier. If an error is detected then the
error number is stored in the error list of that particular class
in the database. After monitoring all the classes with source
code the results are stored in database as in table I.

TABLE I

CLASS NAME WITH THEIR ERROR NUMBERS

 The metrics we have used are stored with the error code
and error name as in table II.

TABLE II

ERROR NAME WITH ERROR CODE

 When the compiler has identified the faulty classes the
result will be displayed in a format as that of figure 13. The
user can view the errors of a particular class by selecting the
class required and on clicking the “error view” button the
errors of that class will be listed at the right side by
retrieving its error names from the database with the help of
“errcode “listed in errlst.

class C extends A,B
{
MP_A()
{
System.out.println("WELCOME TO
MP_A");
}
}

ISSN : 0975-3397

Bremananth R et al /International Journal on Computer Science and Engineering Vol.1(2), 2009, 81-88

85

 Fig. 13 Error view for a specific class

 On clicking the “ok” button all the errors with their
specific classes are displayed as in figure 14.

 Fig. 14 Clustered errors in various classes

Listing.1 specifies source code which creates up a panel with
error view, ok and load buttons. The load button loads the
path of the folder where the classes to be tested are placed.
The code for compiling the java classes and displaying the
errors is called in turn and the classes with the errors are
displayed as in figure 13.

 list.addListSelectionListener(this); //list control
event handled
 list.setVisibleRowCount(5);
 JScrollPane listScrollPane = new
JScrollPane(list); //scrollpane set to list control
 list1.setVisibleRowCount(5);
 JScrollPane listScrollPane1 = new JScrollPane(list1);
 JButton hireButton = new JButton(hireString);
 HireListener hireListener = new
HireListener(hireButton);
 hireButton.setActionCommand(hireString);
 hireButton.addActionListener(hireListener);
 hireButton.setEnabled(true);
 OK = new JButton("OK");
 OK.addActionListener(new OKListener());
 fireButton = new JButton(fireString);
 fireButton.setActionCommand(fireString);
 fireButton.addActionListener(new FireListener());
//Create a panel that uses BoxLayout.
 JPanel buttonPane = new JPanel();
 JPanel listpanel = new JPanel();
 listpanel.add(listScrollPane);
 listpanel.add(listScrollPane1);
 buttonPane.setLayout(new BoxLayout(buttonPane,
 BoxLayout.LINE_AXIS));
 buttonPane.add(fireButton);
 buttonPane.add(Box.createHorizontalStrut(5));
 buttonPane.add(new
JSeparator(SwingConstants.VERTICAL));
 buttonPane.add(Box.createHorizontalStrut(5));
buttonPane.setBorder(BorderFactory.createEmptyBor
der(5,5,5,5));
 add(toppanel, BorderLayout.NORTH);
 add(listpanel, BorderLayout.CENTER);
 add(buttonPane, BorderLayout.PAGE_END);
}
class OKListener implements ActionListener
 {
public void actionPerformed(ActionEvent e)
 {
//adding selected fields to the vector
 Vector v = new Vector();
 v.addElement(list1.getModel().getElementAt(i));
dispwin.createAndShowGUI(); //next screen with
vector as input
 }
}
class LoadListener implements ActionListener
 {
public void actionPerformed(ActionEvent e)
 {
 JFileChooser jfc = new JFileChooser();
jfc.setFileSelectionMode(JFileChooser.DIRECTORIE
S_ONLY);

public resultwin() {
 super(new BorderLayout());
 fileName = new JTextField(10);
 errlst = new Vector();
 Load = new JButton("Load");
 toppanel = new JPanel();
 toppanel.add(Load);
 toppanel.add(fileName);
 //adding List controldetails
 Load.addActionListener(new LoadListener());
 listModel = new DefaultListModel();
 listModel1 = new DefaultListModel();
//Create the list and put it in a scroll pane.
 list = new JList(listModel);
 list1 = new JList(listModel1);
list.setSelectionMode(ListSelectionModel.SING
LE_SELECTION);
 list.setSelectedIndex(0);

ISSN : 0975-3397

Bremananth R et al /International Journal on Computer Science and Engineering Vol.1(2), 2009, 81-88

86

 if (e.getSource() == Load)
 {
int rVal = jfc.showOpenDialog(new resultwin());
if (rVal == JFileChooser.APPROVE_OPTION)
{
 file = jfc.getSelectedFile();
 String fname1 = file.getAbsolutePath();
 fileName.setText(fname1);
 mainfile.disp(fname1);
}
 try
 {
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
con =
DriverManager.getConnection("jdbc:odbc:stst");
st = con.createStatement();
r = st.executeQuery("select * from clserr");
while (r.next())
{
listModel.addElement(r.getString("class_name"));
errlst.addElement(r.getString("errlst"));
}
}
catch (Exception eee)
{
}
}
}
}
class FireListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 //This method can be called only if there's a valid
//selection so go ahead and remove whatever's
//selected.
 int index = list.getSelectedIndex();
String s = (String)errlst.elementAt(index);
String res[] = p.split(s);
listModel1.clear();
try
{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
Connection con1 =
DriverManager.getConnection("jdbc:odbc:stst");
Statement st1 = con.createStatement();
ResultSet r1;
for (int rr = 0; rr < res.length; rr++)
{
 System.out.println(res[rr].trim());
r1 = st1.executeQuery("select errname from errtab
where errcode='" + res[rr].trim() +"'");
if (r1.next())
{
listModel1.addElement(r1.getString("errname"));
}
}
}
catch (Exception eee)
{
 System.out.print(eee);
}

 int size = listModel.getSize();
 if (size == 0) { //Nobody's left, disable firing.
 fireButton.setEnabled(false);
 }
else { //Select an index.
 if (index == listModel.getSize()) {
 //removed item in last position
 index--;
 }
 list.setSelectedIndex(index);
 list.ensureIndexIsVisible(index);
 }
 }
}
 //This listener is shared by the text field and the hire
button.
 class HireListener implements ActionListener,
DocumentListener {
 private boolean alreadyEnabled = false;
private JButton button;
 public HireListener(JButton button) {
 this.button = button;
 }
 //Required by ActionListener.
 public void actionPerformed(ActionEvent e) {
int index = list1.getSelectedIndex(); //get selected index
String s = (list1.getSelectedValue()).toString();
listModel1.remove(index);
listModel.addElement(s);
 if (index == -1) { //no selection, so insert at beginning
 index = 0;
 } else { //add after the selected item
 index++;
 }
list1.setSelectedIndex(index);
 list1.ensureIndexIsVisible(index);
 }
protected boolean alreadyInList(String name) {
 return listModel.contains(name);
 }
 //Required by DocumentListener.
 public void insertUpdate(DocumentEvent e) {
 enableButton();
 }
 //Required by DocumentListener.
 public void removeUpdate(DocumentEvent e) {
 handleEmptyTextField(e);
}
//Required by DocumentListener.
public void changedUpdate(DocumentEvent e) {
 if (!handleEmptyTextField(e)) {
 enableButton();
 }
 }
 private void enableButton() {
 if (!alreadyEnabled) {
 button.setEnabled(true);
 }
 }

ISSN : 0975-3397

Bremananth R et al /International Journal on Computer Science and Engineering Vol.1(2), 2009, 81-88

87

Listing. 1 Displaying errors of specific class

 The source code compiles the classes to be tested and
specifies the faults that occur in a single combination is
clustered and the classes that posses those clustered faults
are displayed along with the clustered faults(Listing 2)

private boolean
handleEmptyTextField(DocumentEvent e) {
 if (e.getDocument().getLength() <= 0) {
 button.setEnabled(false);
 alreadyEnabled = false;
 return true;
 }
 return false;
 } }
//This method is required by
ListSelectionListener.
 public void
valueChanged(ListSelectionEvent e) {
 if (e.getValueIsAdjusting() == false) {

 if (list.getSelectedIndex() == -1) {
 //No selection, disable fire button.
 fireButton.setEnabled(false);
 } else {
 //Selection, enable the fire button.
 fireButton.setEnabled(true);
 }
 } }
 /**
* Create the GUI and show it. For thread
safety,
 * this method should be invoked from the
 * event-dispatching thread.
 */
 private static void createAndShowGUI() {
 //Create and set up the window.
 JFrame frame = new JFrame("Java
Compiler");

frame.setDefaultCloseOperation(JFrame.EXIT
_ON_CLOSE);

 //Create and set up the content pane.
 JComponent newContentPane = new
resultwin();
 newContentPane.setOpaque(true);
//content panes must be opaque
 frame.setContentPane(newContentPane);

 //Display the window.
 frame.pack();
 frame.setVisible(true);
 } public static void main(String[] args) {
 //Schedule a job for the event-dispatching
thread:
 //creating and showing this application's
GUI.
javax.swing.SwingUtilities.invokeLater(new
Runnable() {
 public void run() {
 createAndShowGUI();} }); }}

 dispwin()
 {
 Pattern p =
Pattern.compile(",");
 try
 {
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
Connection con =
DriverManager.getConnection("jdbc:odbc:stst");
st = con.createStatement();
st1 = con.createStatement();
st2 = con.createStatement();
v = new Vector();
v1 = new Vector();
v2 = new Vector();
r = st.executeQuery("select distinct errlst from
clserr");
while (r.next())
{
v.addElement(r.getString("errlst"));
}
for (int vv = 0; vv < v.size(); vv++)
{
 String dstr = (String)v.elementAt(vv);
 String ress[] = p.split(dstr);
 String ename="";
 for (int i = 0; i < ress.length; i++)
 {
 System.out.println("select errname from errtab
where errcode='" + ress[i].trim() + "'");
 r1 = st1.executeQuery("select errname from
errtab where errcode='" + ress[i].trim() +"'");
 while (r1.next())
 {
 ename += r1.getString("errname") + ",";
 System.out.println(ename);
 }
}
v1.addElement(ename.substring(0,
ename.length() - 1));
System.out.println("select class_name from clserr
where errlst='" + dstr.trim() + "'");
r2 = st2.executeQuery("select class_name from
clserr where errlst=' " + dstr.trim() + "'");
String dstr1 = "";
while (r2.next())
{
dstr1 += r2.getString("class_name")+",";
System.out.println(dstr1);
}
v2.addElement(dstr1);
}
Vector columnNames = new Vector();
columnNames.addElement("Errors");
columnNames.addElement("Classes");
int columns = columnNames.size(); ISSN : 0975-3397

Bremananth R et al /International Journal on Computer Science and Engineering Vol.1(2), 2009, 81-88

88

Listing. 2 Displaying clustered errors with their classes

V CONCLUSION AND FUTURE
ENHANCEMENT

 The run-time errors are predicted which would lead to
higher efficiency of software and quality of resulting
process. The common combination of errors can be
identified. By considering the object-oriented faults that can
be generated from object-oriented constructs, we can gain
insight into a number of issues in object-oriented analysis.
 In future, this paper can be used to predict the
percentage of failure in object-oriented software due to these
faults. The paper can also be enhanced using neural network
techniques by increasing the number of metrices which
provides high accuracy in discrimination between faulty and
fault-free classes.

ACKNOWLEDGMENT
Authors thank the SNR & Sons Charitable Trust, Coimbatore,
India for providing necessary infrastructure to complete this
research study.

REFERENCES

[1] Atchara Mahaweerawat, Peraphon sophatsathit, Chidchanok Lursinsap
and Petr Musilek,”Fault prediction in object-oriented software using Neural
network techniques”, Proceedings in the InTech conference, Houston, TX,
USA, 2004, pp.1-5.
[2] J.Offut and R.Alexender,“A fault model for subtype inheritance and
polymorphism”, in 12th international symposium on software reliability
engineering, November 2001, pp.84-95.
[3] F.Lanubile,” Evaluating predictive quality models derived from software
measure: lessons and learned”, Journal of Systems and Software, 1997, Vol.
38, issue 3, pp.225-234.
[4] Robert V.Binder,”Testing object-oriented software: A survey”, Journal of
software testing, verification and reliability, 1996, Vol. 6, No. 3-4, pp. 125-
252.

Bremananth R received the B.Sc and M.Sc.
degrees in Computer Science from Madurai
kamaraj and Bharathidsan University, India in
1991 and 1993, respectively. He has obtained
M.Phil. degree in Computer Science &
Engineering from Bharathiar University. He has
received his Ph.D. degree in the Department of
CSE, PSG College of Technology, India, Anna
University, Chennai.

Presently, He is a Professor Department of Computer Applications, Sri
Ramakrishna Engineering College, Coimbatore, India. He has 16 years of
teaching experience and published several research papers in the National and
International Journals and Conferences. He has received M N Saha Memorial
award for the year 2006 by IETE. His fields of research are pattern
recognition, computer vision, image processing, biometrics, multimedia and
soft computing.

Dr. Bremananth is a member of Indian society of technical education,
advanced computing society, ACS and IETE.

Thushara R has completed her B.Sc. in Computer
Technology in Sri Ramakrishna Engineering
College, affiliated to Anna University Coimbatore,
Tamil Nadu, India. She is also a research student
with Dept. of Computer Applications Sri
Ramakrishna Engineering College, affiliated to
Anna University Coimbatore, Tamil Nadu, India.

for (int rrr = 0; rrr < v2.size(); rrr++)
{
 System.out.println(v2.elementAt(rrr));
 Vector row = new Vector(columns);
 row.addElement(v1.elementAt(rrr));
 row.addElement(v2.elementAt(rrr));
 data.addElement(row);
}
JTable table = new JTable(data,
columnNames);
JScrollPane scrollPane = new
JScrollPane(table);
add(scrollPane, BorderLayout.CENTER);
}
catch (Exception e)
{
 System.out.println(e);
}
}
public static void createAndShowGUI()
{
//Create and set up the window.
JFrame frame = new JFrame("Java
Compiler");
frame.setDefaultCloseOperation(JFrame.EXIT
_ON_CLOSE);
//Create and set up the content pane.
JComponent newContentPane = new
dispwin();
newContentPane.setOpaque(true); //content
panes must be opaque
frame.setContentPane(newContentPane);
//Display the window.
frame.pack();
frame.setVisible(true);
}}

ISSN : 0975-3397

