
Shishir Kumar et al /International Journal on Computer Science and Engineering Vol.1(2), 2009, 56-61

56

Detection and Prevention of New and
Unknown Malware using Honeypots

Shishir Kumar*, Durgesh Pant

*Jaypee Instuitute of Engineering & Technology
A-B Road, Raghogarh, Guna (MP) India-473226

ABSTRACT - Security has become ubiquitous in every
domain today as newly emerging malware pose an ever-
increasing perilous threat to systems. Consequently,
honeypots are fast emerging as an indispensible forensic
tool for the analysis of malicious network traffic.
Honeypots can be considered to be traps for hackers
and intruders and are generally deployed
complimentary to Intrusion Detection Systems (IDS)
and Intrusion Prevention Systems (IPS) in a network.
They help system administrators perform a rigorous
analysis of external and internal attacks on their
networks. They are also used by security firms and
research labs to capture the latest variants of malware.
However, honeypots would serve a slightly different
purpose in our proposed system. We intend to use
honeypots for generating and broadcasting instant
cures for new and unknown malware in a network. The
cures which will be in the form of on-the-fly anti-
malware signatures would spread in a fashion that is
similar to the way malware spreads across networks.
The most striking advantage of implementing this
technology is that an effective initial control can be
exercised on malware. Proposed system would be
capable of providing cures for new fatal viruses which
have not yet been discovered by prime security firms of
the world.

Keywords - Honeypots, Malware, Security, Anti-
malware signatures, Malware detection

1. INTRODUCTION

Several security firms across the world are busy
preparing patches and cures for the plethora of
malware existent today. But the fact remains that for
every cure created for a malware, a subtle variant of
the same malware is created that bypasses all the
latest security patches thereby nullifying all the hard
work and effort put in to counter them. To make
things worse, malware is becoming smarter everyday
and polymorphic malware are the latest entrants in
this calamitous game of defeating the opponent.
These malware are capable of self-reproduction, each
instance of which adopts a completely different
identity from its parent. In several recent malware

outbreaks, especially pertaining to fatal viruses,
considerable damage had already been done to
thousands of systems and networks worldwide before
the viruses were discovered and patches were
released to invalidate them. Thus, we must create an
anti-malware mechanism that is capable of creating
and spreading cure for new variants of malware at the
same speed and in the same fashion that malware
adopts for spreading across networks.

Our research proposal aims at providing a solution to
the above described problem. We intend to use
honeypots as a tool to capture new and unknown
malware. Once detected, our honeypot will create on-
the-fly anti-malware signatures and broadcast them
throughout the network being guarded by it.
Individual hosts will then update their anti-malware
signatures and thus remain protected against any
threat posed to them by fatal malware. The entire
process of detection of new malware and the creation
and broadcast of a cure for it on a particular network
would ideally be a matter of a few seconds or
minutes. This is obviously much quicker than waiting
for major security firms to first discover the new
malware and then release patches for them. The
following paragraphs describe the approach that we
would adopt in order to realize this technology.

2. RELATED WORK

Detection of new variants of malware is among the
major research activities that are carried out by
security firms in the IT industry. A majority of anti-
virus firms and research organizations use honeypots
to capture variants of existing as well as new
malware. They work upon the acquired data and
binary samples to produce patches for defense against
malware threats. For instance, Avira, an anti-virus
firm uses distributed honeynets to gather binary
samples of new malware from networks and subnets
spread all over the globe [9]. The combination of
such data from a variety of sources proves to be

ISSN : 0975-3397

Shishir Kumar et al /International Journal on Computer Science and Engineering Vol.1(2), 2009, 56-61

57

extremely useful in creating efficient security
patches.

Another attempt to use honeypots with anti-virus
capabilities was made by IBM in 2005. The project
was named Anti-Virus in the Wild [8] and a
presentation on the same was made in the Virus
Bulletin Conference in October 2005 at Dublin. It
consisted of a network of thirteen virtual Windows
XP systems (each serving as a honeypot) realized
using four real machines. Each honeypot had one
popular anti-virus installed on it with no other
network protection enabled. A single firewall
guarded the entire network as a whole. The main aim
of the project was to compare the efficiency of the
thirteen most popular anti-virus software in the
industry.

The projects mentioned above have used honeypots
in accordance with malware detection but their main
aim was to detect and gather binary samples of
variants of existing and new malware, especially
viruses. Our research initiative takes this mechanism
one step ahead as we intend to generate automated
cures for malware that will be detected by our
honeypot. These cures would then spread across the
network guarded by our honeypot adopting the same
mechanism that malware uses to propagate itself,
thereby nullifying the satanic intentions of malware
creators.
A concept similar to the one proposed by us has been
presented by Frank Castaneda, Emre Can Sezery, and
Jun Xuy in their paper ‘Worm Vs. Worm’ [1]. They
have proposed a method that transforms a malicious
worm into an anti-worm to disinfect its original and
then evaluated this method using the CodeRed,
Blaster and Slammer worms. In addition, researchers
at Columbia University, New York have are also
working on a project named ‘A Network Worm
Vaccine Architecture’ which presents an architecture
that is very much in conjunction to that proposed by
us [7].

3. PROPOSED APPROACH

The most important consideration in view of our
solution is that it will be completely network based.
Our proposed anti-malware system will be divided
into two major parts: A honeypot server and a thin
client. An instance of our thin client will be installed
on each host present in the network being guarded by
the honeypot server.

The honeypot server can be considered to be the
protagonist of our anti-malware system. This will be

a high-interaction research honeypot and shall be
responsible for detecting all kinds of malware on the
network under surveillance. To prepare our honeypot
for this task, we will have to equip it with robust
malware-detection mechanism. In the first version of
our system, we would restrict ourselves only to
pattern-based detection of malware. Heuristics and
new technologies like buffer overflow protection and
network port blocking would be considered for
inclusion into the malware detection mechanism after
the first version of our system becomes efficient and
robust.

Apart from the ability to detect malware, our
honeypot would in the future also be capable of
generating cures in the form of anti-malware packets
for every malware detected by it. An anti-malware
packet will consist of an anti-malware signature, a set
of operating system undo operations and a harmless
anti-worm created out of the original malware. The
signatures would be generated on-the-fly as soon as a
new malware is detected and then inserted into an
anti-malware packet. Subsequently, these packets
would be broadcasted to all the hosts present on the
network being guarded by our honeypot.

Several technologies would be involved in the
creation of a mechanism for the detection of malware
and subsequently for generating anti-malware
signatures for them. Phenomenal research work is
currently underway in these areas. We will tweak
these existing technologies before incorporation into
our honeypot. This would ensure that our anti-
malware system produces efficient output to the
maximum possible extent with a minimum number of
false positives.

3.1 THE MALWARE DETECTION PHASE

The first phase of our system involves monitoring of
all network traffic that passes through our honeypot
and detection of code that possibly may be malicious
in nature. Suspected pieces of malicious code will
then be redirected to a virtual machine installed on
the honeypot itself. Program monitoring tools in the
virtual machine would then perform analysis on the
code to ensure if it really is malicious in nature or
not. If the code is indeed of malicious nature, then the
virtual machine would further monitor its activities
and create a log of the changes that the code makes to
the operating system. Therefore, in order to reduce
overheads on the honeypot as well as the virtual
machine, it is important for the malware detection
algorithms that will be used in this phase to be
extremely robust. These algorithms should also

ISSN : 0975-3397

Shishir Kumar et al /International Journal on Computer Science and Engineering Vol.1(2), 2009, 56-61

58

produce as few false positives and false negatives as
possible, although it is not practically possible to
achieve hundred percent accuracy.

Most of the existing malware detection algorithms
rely on pre-defined malware signature databases to
scan network traffic for traces of patterns which are
known to them. However, the aim of our system is to
protect a network against new and unknown
malware. The use of pre-defined signature based
detection algorithms would not produce satisfactory
results in our case. Therefore, we need to device a
new algorithm that would enable us to detect new and
unknown patterns that may potentially be malicious
in nature. The following paragraphs define and
explain the approach adopted by us to accomplish
this task.

3.2 DETECTION OF MALICIOUS TRAFFIC

In order to detect malicious content in network
traffic, we must use background services deployed on
the honeypot as well as the capture device. Windows
services are the best examples of background
services. The capture device should be used
exclusively to capture live network traffic in its
native format and the other machine should be the
honeypot where the actual detection process takes
place.

We propose a malware detector service which
analyses the captured network traffic, extracts
relevant network traffic patterns from it and then uses
several statistical methods to determine which
patterns may be malicious in nature. It would help if
the captured packets are converted into packet sets
before analysis. This improves the statistical analysis
done on the relevant patterns.

The Bloom filter, conceived by Burton H. Bloom in
1970, is a space-efficient probabilistic data structure
that is used to test whether an element is a member of
a set. False positives are possible, but false negatives
are not. Elements can be added to the set, but not
removed (though this can be addressed with a
counting filter). The more elements that are
added to the set, the larger the probability of
false positives.

An empty Bloom filter is a bit array of m bits, all set
to 0. There must also be k different hash functions
defined, each of which maps a key value to one of the
m array positions.

The probability of getting a collision in the Bloom
Filter varies with the following equation:

We propose to use a Bloom Filter with 10,000 bits to
find intersecting patterns between two packets.
Assuming that each packet size would be
approximately 1500 bytes, the probability of
encountering a collision would be as low as 6.1 × 10-4

. With such a low collision probability, the hashing
algorithm described below can be deemed robust
enough for this application.

We would be using a simple hashing algorithm to
generate hash codes for patterns that are relevant to
the malware detection process. The main advantage
of using hashing to compare patterns over direct
string comparison lies in the speed of comparison.
Let us consider a pattern (C1 C2 … Cn) to be hashed.
Let the lower limit of pattern length be K and the
number of bits in our Bloom Filter be M. Then,

H = c1q
k-1 + c2q

k-2 + … + ck-1q + ck (Mod M)

Each packet set contains several packets captured in a
sequence. This ensures that every byte that is
transferred on a network is also stored in the captured
packets. Our next task is to extract from these packet
sets, all the patterns that are relevant to our detection
process. Relevance may be judged on the basis of
several parameters, the most common one being
length. Extremely short patterns (those with length
less than 10 bytes) have the tendency of occurring
with high frequencies in malware as well as
legitimate traffic rendering such patterns useless for
our algorithm. In contrast, studies show that the
length of a typical malware code does not exceed a
certain amount to ensure its fast propagation over the
Internet. This implies that we need to look for
patterns with length that is optimal for malware
identification by setting lower and upper thresholds.

Fang Hao, Murali Kodialam, T.V. Lakshman and Hui
Zhang state in their publication 'Fast Payload-Based
Flow Estimation for Traffic Monitoring and Network
Security' [3] that using a lower threshold in the range
of 20 bytes to 40 bytes can be considered to be a
good tradeoff to start with. On the other hand, setting
the upper threshold is not a simple task and is another
research problem as we can never be sure of the
maximum code length that malware developers may
decide upon. Setting a rigid upper threshold may also
allow smaller suspicious patterns to pass through our
detection mechanism.

ISSN : 0975-3397

Shishir Kumar et al /International Journal on Computer Science and Engineering Vol.1(2), 2009, 56-61

59

Once we decide a minimum pattern length to be
searched for, we start scanning each captured packet
for patterns that might be of interest to us. We
accomplish this task in groups of two packets each in
a way similar to that described in [3]. Note that each
packet set analyzed by us is a separate file which
contains an array of packets within itself. Thus at any
point of time, our algorithm analyses a packet set by
analyzing its constitutional packets in groups of two
to find patterns that are common to both the packets.
This procedure can be considered to be a
modification of the well-known Longest Common
Substring (LCS) problem. We find patterns of all
lengths that are common to both the packets currently
being analyzed but with the restriction that the
patterns must be of a minimum length as specified in
our algorithm.

Let us consider two packets P1 and P2 of unequal
length with the following contents:

Packet P1
A B C D E F G H I J K

Packet P2

The common patterns in the above two packets have
been shaded appropriately. Assuming that we have to
find all the common patterns in P1 and P2 with a
minimum length of 3 bytes (denoted as 3-patterns),
the following two patterns would be of interest to us.
We would discard the pattern ‘a’ because it does not
satisfy our minimum length criteria.

The above described procedure for finding patterns
relevant to our algorithm is repeated several times for
all the packet sets in a corpus captured by the Packet
Capture Service. Every time a new pattern is
discovered, we store it in a table called the
Coincidence Count Table along with its hash code
and the number of times it has been discovered in the
captured packet corpus. If a particular pattern is
discovered more than once, its count in the
Coincidence Count Table is incremented accordingly.
The coincidence count of each pattern is also used to
get an estimate of the fraction of captured packets in
that packet set in which that particular pattern occurs.

Let fQ denote the fraction of the packets containing a
pattern Q (assuming that we have N packets per
packet set) and let S(Q) be the coincidence count of
that pattern. Then,

fQ =

We create one coincidence count table for each
packet set. Therefore, if we have ten packet sets per
corpus, we will have ten coincidence count tables
associated with each corpus.

After all the packet sets are searched for patterns of
interest to us, our coincidence count tables get ready
for statistical analysis. We lay more emphasis on
those patterns that have a higher value of fQ.
Intuitively, we can set a threshold for fQ above which
all the patterns need to be analyzed in detail to see the
changes they make to an OS. However, proceeding in
this fashion may lead to a high rate of false positives,
something that we wish to reduce in order to improve
the overall performance of our system. We therefore
use a statistical technique called Inverse Distribution
followed by Standard Deviation to further analyze the
fQ value of relevant patterns.

An efficient algorithm for performing inverse
distribution analysis has been presented by Vijay
Karamcheti, Davi Geiger, Zvi Kedem and S.
Muthukrishnan in [2]. We wish to use a similar
technique to reduce the number of false positives
generated by our detection scheme.

4. EXPERIMENTAL RESULTS

To test our detection algorithm, we created three
different windows services: The Packet Capture
Service, The Corpus Receiver Service and The
Malware Detector Service. The former service runs
on the capture device while the other two run on the
honeypot. We created a trivial FTP for transferring
captured packets from the capture device to the
honeypot. As we stated earlier, the captured packets
are converted into packet sets. Several packet sets are
clubbed together to form a corpus which is sent
across to the honeypot using the trivial FTP. For
testing purposes, we have decided to enclose 100
packets in one packet set and 10 packet sets in one
corpus. The capture device we have chosen is a
server which has global access to the internet. This
would enable us to experiment with real network data
for better results.

A M N B C D O P Q G H I J R

G H I J

B C D

ISSN : 0975-3397

Shishir Kumar et al /International Journal on Computer Science and Engineering Vol.1(2), 2009, 56-61

60

The Malware Detector Service on the honeypot
periodically applies the algorithms described above
in order to detect possibly malicious traffic in the
captured packet sets. We have set the periodicity of
this service as one hour for testing purposes. All
suspected strings are appended to a file which is
stored in the honeypot.

We have operated this setup for about four weeks and
manually analyzed the type of network traffic that is
deemed malicious by it. Many of the detected strings
consist of java script and plain HTML code. While it
is unlikely for plain HTML code to be malicious in
nature, java script can cause a lot of damage to
systems and networks if intended to do so. We also
spread the test virus EICAR on the network and it
was detected by our system. However, further
analysis is required in order to correctly identify
malicious items. Our suggestions of future work in
the next section can provide some valuable tips for
continuing research on this topic.

5. FUTURE WORK

Our anti-malware system aims at providing complete
protection to networks against new and unknown
viruses. However, it is a well-known fact that
malware is ever-evolving and malware authors learn
new tricks everyday to help them easily evade the
existing security mechanisms. Therefore, the task of
first detecting unknown suspicious network activity,
then analyzing them to see the changes they make to
our operating systems and finally generating cures for
them are in themselves individual research topics. To
the best of our knowledge, no such anti-malware
system exists in the world as of today. Hence, this
proposal bears tremendous scope for future work in
the form of enhancements and optimizations to the
work done by us.

We have limited this paper to the detection of
possibly malicious network traffic. However, the
detected mal-strings must be further analyzed to
ensure that they really are malware and if that is true,
then what changes they make to the operating system.
This is a vast research topic which requires in-depth
knowledge of binary instruction sets and also how an
operating system functions. Although, we have
already begun working on this front, a lot more needs
to be accomplished before our analysis architecture
can be made robust enough. As a small step towards
achieving this goal, Amit Vasudevan and Ramesh
Yerraballi have proposed powerful dynamic fine-
grained malicious code analysis frameworks like
Cobra [4] and SPiKE [6], to combat malware that are

becoming increasingly hard to analyze. DOME [5] is
another host-based technique for detecting several
general classes of malicious code in software
executables. Enhanced versions of such frameworks
can be extremely helpful in analysis of malware.

In addition, we can also install malware aware thin
clients capable of scanning systems for malware
known to them on every host in our network. Each
instance of our thin client will maintain a database of
anti-malware signatures. As soon as a new signature
is broadcasted over the network by the honeypot
server, the thin clients would update their malware
database with the incoming packet. This would be
followed by a malware scan of each node by thin
clients. If the signature of a malware present on our
network exists in the database of the thin clients, it
would subsequently be either deleted, healed or
quarantined by the thin clients, as demanded by the
situation. Moreover, since the database of the thin
clients would consist of a very small number of
definitions as compared to commercially available
anti-virus and anti-spyware software, the total
amount of time taken to scan a system would be
considerably less as compared to other scanners. This
will result in preservation of valuable computing
resources.

However, despite the several advantages of our anti-
malware system, it contains certain pitfalls which we
would overcome in future versions of our system.
The thin clients installed on each node of a network
should be able to initialize a scan irrespective of
whether the honeypot server detects a malware and
broadcasts its anti-malware definition over the
network or not. Thus even if a known malware is
injected into the network via secondary media, its
detection and removal can be done with the help of
thin clients. This will enable thin clients to provide
real time malware protection and external triggers
will not be required to initiate scans. Additionally, all
thin clients should be capable of triggering network
scans whenever they detect a malware. This will
expedite the process of malware detection and
removal.

Another major drawback of our system as mentioned
earlier is that currently our system relies entirely on
pattern-based detection of malware. After the current
version of our system becomes efficient and robust,
we would also include better malware detection
technologies like heuristics, buffer overflow
protection and network port blocking into the
malware detection mechanism of our honeypot. This
will further help reduce the number of false positives

ISSN : 0975-3397

Shishir Kumar et al /International Journal on Computer Science and Engineering Vol.1(2), 2009, 56-61

61

generated during the detection phase by our
honeypot.

6. CONCLUSION

Our anti-malware system has several advantages
which include protection against new and unknown
malware threats which have not yet been discovered
by major security firms. This would also hold true for
less popular yet harmful malware which are not
globalized but confined to specific geographical
locations. Moreover, since the size of the anti-
malware signature database would be very small as
compared to those contained by popular anti-virus
and anti-spyware products, system scans performed
by our thin clients would take very little time
consequently saving valuable system resources. In
addition, our honeypot would also serve as a valuable
research tool for the analysis of new and upcoming
malware production and distribution techniques.

With the help of our proposed system, we have
introduced the idea of using honeypots for the
detection and prevention of new and unknown
malware, especially localized yet harmful malware
and also those for which security patches have not yet
been released by major security vendors. We have
suggested how our proposal is an extension of the
work that honeypots are being used currently for. In
order words, while honeypots are basically used for
gathering binary samples of newly evolving malware,
our anti-malware system would use honeypots for
detecting new and unknown malware. Furthermore,
our honeypot can also help in generating anti-
malware signatures for the possibly malicious code
detected by it. These signatures would be broadcasted

over the network under surveillance and subsequently
would be used by thin clients to clean malware from
individual hosts. The algorithm which we propose to
be used by our honeypot for detecting possible
malware has also been illustrated in detail. Finally we
listed the advantages and disadvantages of our
system.

7. REFERENCES

[1] Frank Castaneda, Emre Can Sezer, Jun Xuy, WORM
vs. WORM: Preliminary Study of an Active
Counter-Attack Mechanism, WORM'04, October 29,
2004, Washington, DC, USA.

[2] Vijay Karamcheti, Davi Geiger, Zvi Kedem, S.
Muthukrishnan,Detecting Malicious Network Traffic
Using Inverse Distributions of Packet Contents,
SIGCOMM’05 Workshops, August 22–26, 2005,
Philadelphia, PA, USA.

[3] Fang Hao, Murali Kodialam, T.V. Lakshman, Hui
Zhang, Fast Payload Based Flow Estimation for Traffic
Monitoring and Network Security, ANCS’05, October
26–28, 2005, Princeton, NJ, USA.

[4] Amit Vasudevan, Ramesh Yerraballi, Cobra: Fine-
grained Malware Analysis using Stealth Localized-
executions

[5] Jesse C. Rabek, Roger I. Khazan, Scott M.
Lewandowski, Robert K. Cunningham, Detection of
Injected, Dynamically Generated, and Obfuscated
Malicious Code

[6] Amit Vasudevan, Ramesh Yerraballi, SPiKE:
Engineering Malware Analysis Tools using
Unobtrusive Binary-Instrumentation

[7] Stelios Sidiroglou, Angelos D. Keromytis, A Network
Worm Vaccine Architecture, 2003 Columbia
University, New York, USA

[8] Eric Johansen, Anti-Virus in the Wild, Virus Bulletin
Conference October 2005

[9] Oliver Auerbach, AVIRA, Evolution from a Honeypot
to a distributed Honeynet

ISSN : 0975-3397

