

A mining method for tracking changes in
temporal association rules from an encoded

database

Chelliah Balasubramanian*, Karuppaswamy Duraiswamy**

K.S.Rangasamy College of Technology, Tiruchengode, Tamil Nadu-637215, India.

Abstract :Mining of association rules has become vital in
organizations for decision making. The principle of data
mining is better to use complicative primitive patterns and
simple logical combination than simple primitive patterns
and complex logical form. This paper overviews the
concept of temporal database encoding, association rules
mining. It proposes an innovative approach of data mining
to reduce the size of the main database by an encoding
method which in turn reduces the memory required. The
use of the anti-Apriori algorithm reduces the number of
scans over the database. The Apriori family of algorithms
is applied on the encoded temporal database and their
performances are compared. Also an important method on
how to track the association rules that change with time is
focused. This method involves initial decomposition of the
problem. Later the changing association rules are tracked
by dividing the time into smaller intervals and observing
the changes in the itemsets obtained in each such interval.
Thus the results obtained are lower complexities of
computations involved, time and space with effective
identification of changing association rules resulting in
good decisions making. This helps in formalizing the
database metrics in a better way.

Keywords: Temporal database encoding; Association

rules mining; Data mining; Anti-Apriori algorithm; Apriori
family of algorithms; Database metrics

I. INTRODUCTION

Knowledge discovery in databases (KDD) is often
called as data mining. It discovers useful information
from large collections of data [1]. The discovered
knowledge can be rules describing properties of the data,
frequently occurring patterns, clusterings of the objects in
the database, etc. The amount of data stored in database
is growing rapidly.

Intuitively, these large amounts of stored data contain
valuable hidden knowledge [2]. Data mining especially
association rule discovery tries to find interesting

patterns from databases that represent the meaningful
relationships between products and customers or other
relationships in some other applications.

 Because the amount of these transaction data can be
very large, an efficient algorithm needs to be designed
for discovering useful information.

 An association rule describes the associations
among items in which the presence of some items
implies the presence of some other items in a transaction.
In order to find association rules, there is a need to
discover all large itemsets from a large database of
transactions [3]. A large itemset is a set of items which
appear often enough within the same transactions. The
frequent itemset and association rules mining problem
has received a great deal of attention and many
algorithms have been proposed to solve this problem.
Discovering association rules in these algorithms are
usually done in two phases [4][5]. In the first phase, the
frequent itemset are generated and in the second phase,
the interesting rules are extracted from these frequent
itemset. If the support and confidence of a rule is above
the minimum threshold, the rule will be interest. The task
of discovering all frequent itemset is quite challenging
especially in large databases because the databases may
be massive, containing millions of transactions. A
famous algorithm, called Apriori, was proposed in [1],
which generates (k+1)-candidates by joining frequent k-
itemset. So all subsets of every itemset must be generated
for finding superior frequent itemset, although many of
them may be not useful for finding association rules
because some of them have no interesting antecedent or
consequent in the rules. This process takes a long time.
And it also requires thousands of times of database scan.
The complexity of the calculation increases
exponentially. Additionally, the size of database is the
main problem of this algorithm. Some modified
algorithms of Apriori (AprioriTid and AprioriHybrid) are
proposed to solve this problem but these algorithms also
have the database size problem [2]. A method to
encoding the database and an algorithm, which is called

Chelliah Balasubramanian et al /International Journal on Computer Science and Engineering Vol.1(1), 2009, 1-8

ISSN : 0975-3397 1

anti-Apriori algorithm, is brought into focus. By using
this algorithm, only the frequent itemset that are of
interest and can be converted into association rules are
generated, so it has a lower complexity of time and
space. At the meantime, the times of the database scan
are also reduced [2].

 In real life, media information has time attributes
either implicitly or explicitly. This kind of media data is
called temporal data. Temporal data exist extensively in
economical, financial, communication, and other areas
such as weather forecast. Temporal databases store past,
present and possibly future data. Temporal databases are
append-only and current data values become historical
data as new data values are added to the database [6].
Therefore they naturally are fertile data repositories for
data mining and knowledge discovery. In this paper, the
problem of discovery of association rules in temporal
databases is examined. Instead of extracting rules
throughout the entire time line, we will extract rules for
consecutive time intervals with different time
granularities. Thus, the user will be able to see the
changes and fluctuations in the association rules as well
as the time periods over which these rules are valid.
When a database is expanded with an incremental
increase in the number of transactions, we can either
rerun an algorithm such as Apriori, or use the knowledge
obtained from the "original" database to reduce the
processing time for finding small itemsets that have
become large or any large itemsets that have become
small. UWEP (Update With Early Pruning) is used for
this purpose and has been shown to be an efficient
algorithm that addresses the incremental association rule
problem [7]. UWEP scans the original database at most
once and the increment in the database exactly once. It
has been shown to generate and count the minimum
number of candidates in order to determine the new set
of association rules.

 The rest of this paper is organized as follows.
Section 2 introduces the encoding of temporal databases,
along with the application of the Apriori family of
algorithms and the anti-Apriori algorithm that are made
compatible with the encoded temporal database. Section
3 describes the proposed method of discovery of
association rules from an encoded temporal database.
Finally, in Section 4 the conclusion and future
enhancements are given which includes the best features
of the described method and the ways in which it can be
further improved.

II. ENCODING AND APRIORI FAMILY

 In this section, a discussion on the encoding method
and the application of the family of Apriori algorithms
for association rule mining on a static database is
presented.

2.1 The Encoding Method

 The presentation of database is an important
consideration in almost all algorithms. The most
commonly used layout is the horizontal database layout
and vertical one [2]. In both layouts, the size of the
database is very large. A large database to be
transformed into a smaller one with all properties of its
original layout is expected. Database encoding is a new
presentation, which can reduce the size of database and
improve the efficiency of algorithms. Instead of
maintaining a large table in the transaction database, one
table is created with only two columns. The first one is
the transaction identifier and another is for the entire
items that occur in the transaction. All items in one
transaction are converted into only one number that has
all properties of these items. By this way, the new
database is much smaller than the previous one and can
be loaded into memory easily. So the cost of memory is
reduced. According to the assumption that only one
number represents an itemset, when converting an
itemset into a number, a measure attribute is defined,
which is a numerical attribute associated with every item
in each transaction in the database layout. A binary
number expresses a numerical attribute, that is, those
items that are occurring in one transaction are depicted
with 1 and all the other items are represented with 0.
The transaction measure value, denoted as tmv (Ip , Tq),
is a value of a measure attribute related to an item Ip in a
transaction Tq . tmv (Ip , Tq)= 0 means item Ip does not
occur in the transaction Tq, while tmv (Ip , Tq)= 1 means
item Ip occurs in the transaction Tq . In table 1, for
example, tmv (I4, T1) is equal to 1. Any item Ip in the set
of items is encoded as one prime number, denoted as E
(Ip). Prime numbers are used because any number except
1 and themselves cannot divide them. For any item Ip in
the transaction Tq, a new measure denoted as M (Ip, Tq)
is equal to the product of tmv (Ip, Tq) and its encoding
number E (Ip) is assigned. This value is gotten by Eq.
(1). After this step, for all Ip and Tq, if M (Ip, Tq) equal to
0, then convert M (Ip, Tq) into 1. This operation is
described in Eq. (2). For any transactions, the value MTq
is equal to the multiplication of all M (Ip, Tq). The value
of MTq is represented in Eq. (3).

M (Ip, Tq) = tmv(Ip, Tq)×E(Ip) (1)

For all (Ip, Tq) If M (Ip, Tq) = 0 => M(I p, Tq) =1 (2)

MTq= Π (Ip, Tq) (3)

Chelliah Balasubramanian et al /International Journal on Computer Science and Engineering Vol.1(1), 2009, 1-8

ISSN : 0975-3397 2

For any itemset I=(Ip1, Ip2, …, Ipn), there is one value
denoted as MI is equal to the multiplication of all E(Ip) if
its Ip occur in I, as described in Eq. (4). The value MI
shows the number corresponding to itemset I. And then
this number can be used instead of itemset I.

MI = Π E (IP) (4)

 V IP€ I

With this encoding, instead of maintaining all tmv
(Ip,Tq) for every item and transaction, the value MI can
be stored for every transaction. Example 1 shows the
result of using this technique.

Example 1: Convert vertical database layout

Table 1

Binary representation
 TID I1 I2 I3 I4

1 1 0 0 1

2 0 0 0 1

3 1 1 1 0

4 0 0 1 1

Table 2

Prime number form

Ip EIp
I1 7
I2 5
I3 3
I4 2

Table 3

Single number representation

TID M
1 14
2 2
3 105
4 6

 In the case of large databases, encoding an item to one
prime number may cause some problems especially in
computing the value M (which involves multiplication)
for any transaction. As a solution, the database can be
divided into smaller parts vertically by having correlated
items in one part. Then every part of the database is
encoded to one column. Frequent itemset mining is done
independently and association rules in every part are
discovered. After an encoding of this form, the database
has a smaller number of columns which leads to better
performance and efficiency.

2.2 Anti-Apriori Algorithm

 All Apriori-like algorithms for itemset mining start
from finding frequent 1-itemset. In these algorithms,
finding frequent itemset is done in bottom up manner.
Different from these algorithms, a new algorithm called
as anti-Apriori is used, in which the discovery of
frequent itemset is done in up to down style. It means
that the large frequent itemset are found at first and then
all of their subsets (that are certainly frequent) are
extracted. [2]. In this technique, it is supposed that any
frequent itemset must be at least one time occurs in the
transactions lonely (without any other items that are not
member of that itemset).

 In other words, if itemset (I1, I2, I3) is frequent, the
itemset at least in one transaction without any other
items, such as shown in table 4.

Table 4

Frequent itemset presentation

Itemset I1 I2 I3 ……………
Tid 1 1 1 0000000000

 In this method for every transaction Tq, the GCD
(greatest common divisors) between MTq and MT
corresponding to other transactions are computed and
frequencies of these greatest common divisors are stored
in GCD-set. GCD-set is the candidate for frequent set.
For any GCD in GCD-set, if its frequency is above the
required threshold, it will be selected and inserted into
the FGCD-set (frequent GCD itemset). For every
transaction maintained, a set is denoted as GCDTid,
composed of GCDs and frequency of any GCD. For
example, if GCD-set and frequency between first
transaction and other transactions is equal to
GCD1={(42,3), (6,8), (21,2), (15,4), (105,1)} and the
required threshold for support is equal to 7 and then the
set (6,8) has a frequency equal to 8, greater than 7, and
then 6 is inserted into FGCD-set.

 Discovering association rules is based on all FGCD,
which has been found in the previous phase. Measure M
corresponds to any frequent itemset maintained in
FGCD-set. Every measure M in FGCD-set is
decomposed into the multiplication of prime number and
each prime number corresponds to one item. The itemset
that corresponds to M is identical and frequent, and all
subset of it must be frequent. Every M in FGCD-set is
decomposed into a candidate head Y and a body
X=M/Y. This algorithm iteratively generates candidate
heads k+1of k+1 size, starting with k=1. If the head and
the body are interesting and valuable, the confidence C

Chelliah Balasubramanian et al /International Journal on Computer Science and Engineering Vol.1(1), 2009, 1-8

ISSN : 0975-3397 3

of the rule X=>Y is computed as the quotient of the
supports for the itemset. C =Support(M) /Support(X)
(Support(X) is computed by counting the number of
MTid that can be divided by X). If any rule has a C
greater than or equal to the given threshold for
confidence, the rule will be appended into association
rules.

2.3 Apriori, AprioriTid, and AprioriHybrid

 The Apriori and AprioriTid algorithms generate the
candidate itemsets to be counted in a pass by using only
the itemsets found large in the previous pass, without
considering the transactions in the database. The basic
intuition is that any subset of a large itemset must be
large. Therefore the candidate itemsets having k items
can be generated by joining large itemsets having k-1
items, and deleting those that contain any subset that is
not large. This procedure results in generation of a much
smaller number of candidate itemsets. The AprioriTid
algorithm has the additional property that the database is
not used at all for counting the support of candidate
itemsets after the first pass [5]. Rather, an encoding of
the candidate itemsets used in the previous pass is
employed for this purpose. In later passes, the size of
this encoding can become much smaller than the
database, thus saving much reading effort. Based on the
observations of Apriori and AprioriTid, a hybrid
algorithm which is called as AprioriHybrid uses Apriori
in the initial passes and switches to AprioriTid when the
candidate itemset at the end of the pass will fit into the
memory.

III. THE PROPOSED METHOD FOR DISCOVERY OF

TEMPORAL ASSOCIATION RULES

 The problem of finding association rules can be done
as follows: (1) Generate all combinations of items that
have fractional transaction support above a certain
threshold, called minsup. Those items are called large
itemsets, and all other combinations whose support is
below the threshold are called small itemsets. (2) Use
the large itemsets to generate the association rules. For
every large itemset l, find all non-empty subsets of l. For
every such subset a, output a rule of the form a (l-a) if
the ratio of support (l) to support (a) is at least minconf.
If an itemset is found large in the first step, the support
of that itemset should be maintained in order to compute
the confidence of the rule in the second step efficiently.

3.1 Temporal Association Rule Mining

 An entire temporal database can be used for mining
association rules. However, the resulting rules may not
be interesting since data accumulated over a longer time
span is used. Customer behavior and preferences change
over time. Observation of these changes provides useful
information for various decision-making purposes. A
temporal database provides the opportunity to observe
these changes, by mining various subsets of a temporal
database.

 This approach aims at detection of the changes in the
association rules. The changes in association rules occur
over periods of time, and include a decrease (increase)
in the support (confidence) of an association rule and
addition (removal) of itemsets from a particular itemset.
In order to observe how a frequent pattern fluctuates
within certain periods, it is necessary to extract
association rules from datasets accumulated over
consecutive time periods. In this process, the vital
parameters are the length of interval, through which the
set of association rules will be extracted, and the
minimum support and confidence for these rules. The
changes in association rules can be observed through
three steps. 1. Determining the time period, 2.Identifying
temporal association rules and 3.Presentation of
association rules with changes.

 In the first step, the length of the time interval and the
number of such intervals are decided. Then, from the
database, subsets of temporal data for each interval are
extracted. For example, the association rules may be
searched for weekly, monthly and so on until the
specified time and date. In the second step, the
association rules are discovered within a certain period,
and this process is repeated for the whole database for
consecutive time periods. The algorithm for this is as
follows:

1 Initialize ‘start’
2 end = start + L

3 while start ≤end do
4 begin

5 R [start, end] = R <X, fI> [start, end]
6 compute A[start, end]
7 start = start + L + y

8 end = start + L
9 end

Algorithm1: Algorithm for repeated rule mining

 The method undertaken is to retrieve the data for the
subintervals from the original interval. Datasets for the
subinterval are smaller and fits the memory easily. The
operations done for one subinterval are done in a

Chelliah Balasubramanian et al /International Journal on Computer Science and Engineering Vol.1(1), 2009, 1-8

ISSN : 0975-3397 4

sequence for all subintervals. This method utilizes the
results of the smaller datasets. This lends itself to the use
of parallel processing techniques. The Partition
algorithm proposed in can be efficiently used in this
method.

3.2 Calculation of changes in Temporal-Association
Rules

 Individual itemsets change as time progresses. An
itemset that was small can become large, large itemset
can become small, or itemsets may remain large or
small. Small itemsets that are moving towards large are
defined as emerging. Large itemsets that are moving
towards small are submerging. A small (large) itemset
that becomes large (small), i.e. support is above (below)
minsup, is said to have emerged (submerged). Therefore
the following can be identified: (i) itemsets that are
currently emerging (submerging), (ii) which of these
itemsets have the potential to emerge (submerge) within
the next time interval or n intervals.

 Partitioning the Itemset Space partitions the space of
itemsets. It can also be viewed as all the possible
transitions for an itemset X from the original database at
time‘t’ to incremented database at time ‘t+i’. The
support count (SC) of an itemset is the number of
transactions that an itemset satisfies. After extracting the
patterns for small periods, the large itemsets for the
larger time periods can be obtained by using the patterns
extracted before. This is similar to what is present in the
Partition algorithm. The only feature of importance is
that the minimum support for small periods should be
held small enough in order to prevent missing any large
itemsets. The minimum support for larger time intervals
should be adjusted for reliable rule mining. These
parameters cannot be fixed earlier because they are user
and application dependent.

IV. PERFORMANCE EVALUATION

 The anti-Apriori algorithm in combination with the
encoding method decreases the size of the database and
also leads to reduction in the number of passes over the
static database. The performance of AprioriHybrid
relative to Apriori and AprioriTid for large datasets is as
follows. AprioriHybrid performs better than Apriori in
almost all cases. In general, the advantage of
AprioriHybrid over Apriori depends on the size of the
candidate itemset that declines in the later passes. If
there is a gradual decline in the size, AprioriTid can be
used for a while after the switch, and a significant
improvement can be obtained in the execution time. By
using this encoding method the efficiency of Apriori,
AprioriTid, and AprioriHybrid can be improved
significantly.

 Database encoding has been applied to a static
database prior to the application of Apriori or anti

Apriori. To make it scalable, the same has been applied
to a dynamic database, which involves time constraints.
The Apriori family and anti-Apriori algorithm combined
with an encoding method have been applied for
association rule mining on a temporal database. The
encoding method reduced the size of the memory
required as shown in fig1. The use of anti-Apriori
reduced the number of scans on a temporal database.

Fig.1. Effect of encoding on memory required

 Considering the telecommunication temporal database,
which addresses complaints, performance of the Apriori
family of algorithms and the Anti-Apriori algorithm is
as given in the following figures.

Fig .2. Performance of Apriori

Chelliah Balasubramanian et al /International Journal on Computer Science and Engineering Vol.1(1), 2009, 1-8

ISSN : 0975-3397 5

Fig .3. Performance of AprioriTid

Fig. 4. Performance of AprioriHybrid

Fig .5. Performance of anti-Apriori

 The various algorithms considered in this paper differ
in their performance based on the time factor. The time
is measured using WEKA as the tool in the association
rule mining process.

 The performance comparison in terms of the execution
time for the various algorithms is shown in fig 6.

Fig.6. Performance comparison

 The method for discovering temporal association rules
that changes with time tracked the changed rules in an
effective manner, but the effectiveness was dependent
on the users and the applications.

V. CONCLUSION AND FUTURE WORK

 This paper presented the impact of the Apriori family
of algorithms and the anti-Apriori algorithm on an
encoded temporal database for association rule mining.
Each of the algorithms had a different impact and
produced effective results. The AprioriHybrid and anti-
Apriori had better performances in terms of execution
time. Therefore lower complexities of time and space
had been obtained leading to better formalization of
database metrics. The method for discovering temporal
association rules that change over time produced
effective results. This can still be improved by
(i)optimizing the process of discovering association
rules in each interval using better algorithms, and (ii)
optimizing the choosing of the time interval size, leading
to more advantageous openings in the formalization of
database metrics.

Chelliah Balasubramanian et al /International Journal on Computer Science and Engineering Vol.1(1), 2009, 1-8

ISSN : 0975-3397 6

VI. REFERENCES

[1] M.H. Dunham, Data Mining Introductory and Advanced

Topics, Tsinghua University Press, Beijing, (2003).

[2] T.Wang, P.L.He, Database Encoding and an Anti-Apriori
Algorithm for association Rules Mining, Machine Learning
and Cybernetics, (2006) 1195-1198.

[3] A. Savasere, E. Omiecinski, and S. Navathe, An Efficient
Algorithm for Mining Association Rules in Large Databases, In
Proc. of the 21st VLDB’95, Zurich, Switzerland, (1995).

[4] R. Agrawal, T. Imielinski, and A. Swami, Mining Association
Rules between Sets of Items in Large Databases, In Proc. of
ACM SIGMOD’93, Washington, DC,(1993),207-216.

[5] R. Agrawal, R.Srikant, Fast algorithm for mining association
rules, The International Conference on Very Large Data
Bases, (1994) 487–499.

[6] H.Ning, H.Yuan, S.Chen, Temporal Association Rules in Mining
Method, Proceedings of the First International Multi-
Symposiums on Computer and Computational Sciences, (2006).

[7] A.U.Tansel, S.P.Imberman, Discovery of Association Rules in
Temporal Databases, Fourth International Conference on
Information Technology (ITNG’07),IEEE computer society,
(2007).

Chelliah Balasubramanian et al /International Journal on Computer Science and Engineering Vol.1(1), 2009, 1-8

ISSN : 0975-3397 7

Corresponding author .Tel. +91 4288 274741;
fax: +91 4288 274745, E-mail
addresses:rc.balsubramanian@gmail.com
(C.Balasubramanian),
drkduraiswamy@rediffmail.com,
 drkduraiswamy@yahoo.com(Dr.K.
Duraiswamy)

Chelliah Balasubramanian et al /International Journal on Computer Science and Engineering Vol.1(1), 2009, 1-8

ISSN : 0975-3397 8

