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Abstract- Various types of scheduling algorithms are used by 
load balancers to determine which backend server to send a 
request to. Simple algorithms include random choice or 
round robin. High-performance systems may use multiple 
layers of load balancing. Load balancing is the process of 
distributing client request over the set of servers and is a key 
element of obtaining good performance in distributed 
application.. Java RMI extends java with distributed objects 
whose methods can be called from remote clients.   
Keywords--Load balancing, Scheduling, Remote Method 
Invocation 

I.   INTRODUCTION 
In computer networking, load balancing is a 
technique to distribute workload evenly across 
two or more computers, network links, CPUs, 
hard drives, or other resources, in order to get 
optimal resource utilization, maximize 
throughput, minimize response time, and avoid 
overload. Using multiple components with load 
balancing, instead of a single component, may 
increase reliability through redundancy.                                                             
Simple algorithms include random choice or 
round robin. More sophisticated load balancers 
may take into account additional factors, such as 
a server's reported load, recent response times, 
up/down status, number of active connections, 
geographic location, capabilities, or how much 
traffic it has recently been assigned. High-
performance systems may use multiple layers of 
load balancing. Java RMI (Remote Method 
Invocation) adds remote objects to Java 
programs. These remote objects reside on object 
servers, separate machines connected by a 
invocation, which bundles the information 
needed to invoke the method into a message and 
sends it to the appropriate object server for 
execution. In compute-intensive remote object 
programs, clients may be invoking many 
expensive methods on servers. In particular, they 
may be invoking expensive methods on the same 
object, running the risk of decreasing 
performance by overloading the server. To 
improve performance this object can be 
replicated on several servers and requests can be 
distributed to a suitable replica, normally the 
server with the lightest load. This distribution of 
requests is referred to as load balancing, and is 
key to good performance in many distributed 

applications. We do not assume that workload is 
constant and predictable enough that statically 
allocating replicas to clients will produce an 
optimal solution. We also assume that while the 
client must participate in a load balancing 
scheme, it does not have sufficient information 
to determine the best strategy for invoking 
remote objects. That is, we assume the 
implementation of the remote objects is in the 
best position to select an appropriate load 
balancing strategy. This paper shows the use of a 
dynamic, distributed AOP(Aspect-oriented 
programming) system to modify proxy code on 
the client. In contrast, most work in this area 
focuses on allowing the client to supply aspects 
to modify the server object. Second, this load 
balancing strategy is controlled by the balancer 
and server processes based on their knowledge of 
application requirements. The strategy can be 
altered at runtime by these processes as 
necessary. This presents background material 
covering several topics important to this 
research, including Java RMI, aspect-oriented 
programming with JAC(Java Aspect 
Component), and load balancing.  

II.  LITERATURE REVIEW 
This section focuses on other research in 
distributed AOP. Distributed Web-server 
architectures that use request routing 
mechanisms on the cluster side are free of the 
problems of client-based approaches. 
Architecture transparency is typically obtained 
through a single virtual interface to the outside 
world, at least at the URL level. The cluster 
DNS(Domain name system)—the authoritative 
DNS server for the distributed Web system’s 
nodes—translates the symbolic site name (URL) 
to the IP address of one server. This process 
allows the cluster DNS to implement many 
policies to select the appropriate server and 
spread client requests.  DLB(Dynamic load 
balancing) is used to provide application level 
load balancing for individual parallel jobs. It 
ensures that all loads submitted through the DLB 
environment are distributed in such a way that 
the overall load in the system is balanced and 
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application programs get maximum benefit from 
available resources. In this of the DLB has two 
major parts. One is called System Agent that 
collects system related information such as load 
of the system and the communication latency 
between computers. The other is called DLB 
Agent which is responsible to perform the load 
balancing. System Agent has to run all 
configured machine on the environment whereas 
DLB Agent is started by the user. The structure 
and components of the DLB environment is 
shown in Figure 1  

 
Figure 1: Components of DLB 

FORMI(Fragmented object RMI) is built on a 
fragmented object model, where an object 
implementation is split across fragments that can 
be individually distributed across a network [4]. 
Fragments can be used to replicate or partition 
objects across the network. In FORMI, a proxy is 
a fragment on the client. A fragment can be 
replaced with another during execution, allowing 
the distribution of responsibilities to change at 
runtime. FORMI provides the same exibility as 
our aspect-oriented approach, and also does not 
impact client code. However, FORMI introduces 
its own stub compiler, changing the development 
process. 
AWED provides a more exible model that 
supports the distribution of pointcuts and advice 
separately [10]. A pointcut can specify the host 
on which a join point applies and the host on 
which advice should be run. 
AWED permits advice to run on several hosts, 
which makes it useful for replication consistency 
mechanisms. This research could have used 
AWED rather than JAC. One potential problem 
with the used of AWED is that it uses new 
language constructs to specify pointcuts, and it 
does not appear that these constructs can be 
parameterized with runtime arguments. The 
pointcut() method in JAC does permit such 
parameters, making it more exible.�� 

�����Same way Dynamic Load Balancing 
without Packet Reordering, this paper shows that 
one can obtain the accuracy and responsiveness 
of packet-based splitting and still avoid packet 
reordering.This introduce FLARE, a new traffic 
splitting algorithm. FLARE exploits a simple 
observation. Consider load balancing traffic over 
a set of parallel paths Figure2. If the time 
between two successive packets is larger than the 
maximum delay difference between the parallel 
paths, one can route the second packet |and 
subsequent packets from this flow| on any 
available path with no threat of reordering. Thus, 
instead of switching packets or flows, FLARE 
switches packet bursts, called flowlets. By 
definition, flowlets are spaced by a minimum 
interval, chosen to be larger than the delay 
difference between the parallel paths under 
consideration. FLARE measures the delay on 
these paths and sets the flowlet timeout, to their 
maximum delay difference. The small size of 
flowlets lets FLARE split traffic dynamically 
and accurately, while the constraint imposed on 
their spacing ensures that no packets are 
reordered. 

 
Figure 2: As long as the inter-packet spacing is larger than the 
delay difference between the two paths, one can assign the two 
packets to different paths without risking packet reordering. 

III.  ANALYSIS OF PROBLEM 
A second option is to augment the object registry 
to allow multiple remote objects to register 
remote object references using the same name. 
When a lookup is per formed, the registry can 
return one of the registered references to the 
client, and the client invokes methods directly on 
that object. 
This approach cannot be implemented using the 
RMI registry supplied with Java RMI. That 
registry does not permit multiple entries for the 
same name, instead throwing an exception on 
successive attempts to bind with the same name. 
Instead, a customized registry must be used. 
Examples of this approach include the 
SmartRegistry [9] and Jgroup/ARM [8], though 
both systems allow multiple registrations to 
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support replication rather than load balancing. In 
these systems, the registry returns a proxy with 
references to all available replicas for group 
communication. In a load balancing system, the 
registry would return a single reference to one of 
the registered objects. 
Another example of this approach is DNS load 
balancing. DNS databases can have multiple IP 
addresses associated with a name, and DNS 
servers can be configured to return different 
addresses according to a policy. DNS load 
balancing has several limitations. First it can only 
return different IP addresses, so all servers on 
these hosts must use the same port number. 
Second DNS does not check the availability of a 
machine before returning its address, so it may 
return the address of a crashed server. 
A problem with this strategy is that the client 
generally caches the object reference and uses it 
for all remote method invocations, which limits 
the ability to balance load. That is, rather than 
redirecting each request from each client to a 
different server, this strategy redirects all requests 
from a client to the same server. It is possible that 
different clients will issue a different number of 
remote calls and will cause different loads at their 
servers. To redirect requests to another server, a 
client would need to obtain a new remote 
reference by issuing another lookup to the 
registry, and ensure that all client code uses the 
new remote object. In DNS load balancing, this 
problem is exacerbated by the ability of 
intermediate name servers to also cache results, 
although this can be mitigated by setting the 
time-to-live field on the address entry to expire 
relatively quickly Another serious problem with 
this strategy is that it falls to the client to detect 
and redistribute the load if the server becomes 
overwhelmed, by reissuing a lookup request. 
There is no simple mechanism for allowing the 
server to automatically reduce its load by not 
accepting new requests.�
 A load balancer process is placed between 
clients and servers. All client requests are 
forwarded to the balancer process, which 
forwards the request to a suitable server. The 
reply message takes the reverse path. This is 
shown in Figure3. In Java RMI, the balancer 
would maintain a collection of references to 
different remote objects. For each incoming 

request, one of these remote objects would be 
selected and the balancer would invoke the same 
method on it, forwarding the request. The return 
value of the balancer method would simply 
forward the return value from the remote object. 
A similar strategy can be used in Apache, 
forwarding all requests to an entry server that 
rewrites the URL to redirect the request to one of 
a set of servers [1].                       

 
Figure 3: A Balancer forwarding request and replies 

 

This strategy has the benefit of being able 
to redirect each request from each client to a 
suitable server. In addition, incorporating new 
servers is relatively simple. When a new object 
starts on a new server, it could register itself with 
the balancer. From that point, the balancer could 
distribute requests to the new object. The 
balancer can also control the load on the servers 
by deciding how many requests to forward to any 
given server. Once this number has been reached, 
the balancer could queue up requests and forward 
them to servers as they complete their 
outstanding requests. 
However, this strategy adds communication 
overhead in the extra pair of messages between 
balancer and server. This overhead can be 
reduced by having the server reply directly to the 
client, which is not possible in Java RMI without 
altering the underlying RMI protocol. In addition, 
the balancer can potentially form a bottleneck 
since all requests must pass through it, though the 
amount of processing for each request is small. 
However, our approach has a basic security 
mechanism in that the client must explicitly run 
the proxy in a JAC-aware container to allow the 
server to advise it. Finer-grained control is not 
possible, though there are several proposals on 
how to address this problem [6, 12]. 
IV  PROPOSED WORK 

This is to develop systems that dynamically turn 
on to be able to handle the load imposed on the 
system efficiently.  

Our approach to load balancing uses 
dynamic, distributed aspects forwarded from 
server to client to advise client-side proxy 
objects. These aspects allow us to use a balancer 
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process to distribute clients to servers, but also 
allow the servers to shed load when necessary. 
This paper describes an approach to load 
balancing in Java RMI based on dynamic 
distributed aspect-oriented programming using 
Java Aspect Components (JAC) [13]. Aspect 
oriented programming (AOP) allows code (in the 
form of advice) to be inserted at specific points 
in the execution of a program. Dynamic AOP 
systems allow advice to be added and removed at 
run- time. JAC also allows advice to be 
transmitted over a network and applied to objects 
running on other object servers. We use these 
capabilities to create a balancer process that 
modifies a proxy object on the client to direct its 
remote method invocations to a specific replica.  

The overall process is shown in Figure 4 
We start with what appears to be the standard 
solution using a balancer process, where clients 
initially send requests to the balancer. Indeed, the 
first request from each client is treated using this 
standard solution; the request is forwarded to a 
suitable server, and the results follow the reverse 
path. This is shown in messages 1, 3, 4, and 5. 
However, the balancer also dynamically weaves 
a JAC aspect on the client proxy while the 
request is being processed (message 2). This 
aspect alters the proxy to forward requests to a 
specific server. Thus, all subsequent requests are 
forwarded directly from client to the selected 
server (messages 6 and 7). Importantly, the 
balancer applies the aspect to the client when it is 
blocked awaiting the reply to its remote method 
invocation. This removes many of the potential 
concurrency problems that can arise in this type 
of system.     
 A client is assigned to a given server and all 
requests are forwarded to the single location. 
Here, we exploit the ability to dynamically 
unweave an aspect in JAC. If the server is 
overloaded, it can unweave the aspect from the 
client proxy. After this unweaving, the next 
request from that client is forwarded to the 
balancer process, which then applies a new aspect 
to forward client requests to another server. That 
is, once the aspect is unwoven, the scenario in 
Figure repeats itself for the client, except that the 
client may be associated with a new server. 
Again, this unweaving is performed when the 

client is blocked awaiting a reply to reduce 
potential concurrency problems. 

               

 
Figure 4: Load balancing with dynamic remote aspect 
 

This style of load balancing addresses the 
limitations of the two schemes presented in 
above Section. It avoids the need for the load 
balancer to be involved with each request, 
reducing its load and reducing the network 
latency of forwarding each request. It avoids the 
problem of clients caching information, since 
that information is now held in as aspect to 
which the client is oblivious. It also allows the 
server to shed load by unweaving aspects from 
clients, so they can be directed to new servers. 

V.  IMPLICATION  
This style of load balancing addresses the 

limitations of the two schemes presented in above 
Section. It avoids the need for the load balancer 
to be involved with each request, reducing its 
load and reducing the network latency of 
forwarding each request. It avoids the problem of 
clients caching information, since that 
information is now held in as aspect to which the 
client is oblivious. It also allows the server to 
shed load by unweaving aspects from clients, so 
they can be directed to new servers. 

One desirable property of our strategy is 
that it lends itself to balancing client sessions, 
where a session is a series of individual requests 
that form one larger, logical request. It can be 
advantageous to forward all requests for a single 
session to the same server, but balance different 
sessions to different servers. In our strategy, the 
server can achieve this by simply unweaving 
advice from a client at the end of a session  

In assessing our load balancing strategy, 
we first assessed the overhead of the first request 
by the client, which requires the balancer to not 
only forward the request to the server but also 
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weave advice into the client. From the 
perspective of the client, this first requests takes 
its an average. Note that we made sure to 
unweave the advice between successive calls to 
avoid any additional overhead that may 
accumulate by repeatedly weaving advice on the 
same join point. To reduce the overhead of this 
weaving, it is done by a separate thread that runs 
while the balancer forwards the method 
invocation to a server. 

As a baseline, we measured the 
performance of the first load balancing strategy, 
where all requests must be forwarded through the 
balancer before being directed to an appropriate 
server. From the perspective of the client, 
requests take an average of 0.51ms per round 
trip. The request is simply forwarded to the 
server. In assessing our load balancing strategy, 
we first assessed the overhead of the first request 
by the client, which requires the balancer to not 
only forward the request to the server but also 
weave advice into the client. From the 
perspective of the client, this first requests takes 
an average of 5.64 ms. Note that we made sure to 
unweave the advice between successive calls to 
avoid any additional overhead that may 
accumulate by repeatedly weaving advice on the 
same join point. To reduce the overhead of this 
weaving, it is done by a separate thread that runs 
while the balancer forwards the method 
invocation to a server. After the first request, the 
advice woven at the client proxy forwards all 
subsequent requests directly to the server without 
involving the balancer. This avoids the overhead 
of an extra exchange of messages, but incurs the 
overhead of invoking advice woven on the client 
proxy. Some aspect-oriented constructs can incur 
a significant performance penalty in ways that 
are not obvious [2]. In particular, around advice 
may include closure objects, which are expensive 
to create and use. JAC uses Java Reflection 
which can be expensive. However, our balancing 
advice replaces the client proxy code rather than 
invoking it. To assess the overhead of the advice 
at the client proxy, we measured the cost of a 
remote method invocation with an advised proxy 
and the cost of normal remote method invocation 
directly from client to server. These two 
measurements give us the overhead of applying 
aspects to the client proxy. From the perspective 

of the client, the cost of a remote method with a 
balancing aspect was measured to average 0.357 
ms per requests, which was identical to a round 
trip with an unadvised proxy. The advice adds no 
appreciable overhead to the execution of the 
proxy on the client. Our aspect-oriented version, 
which allows requests to be sent directly to a 
server after the first request, cuts 0.153 ms from 
each request, a savings of 30%. However, this 
does come at the cost of weaving, which takes 
5.64 ms in JAC. This requires clients to forward 
44 requests to a given server to make up for this 
extra cost. Again, though, this represents a lower 
bound since our experimental setup does not 
include any scheduling decisions, computation, 
or significant data transfer for method arguments 
and return values. In a more realistic 
environment, we expect this number to be lower. 
In particular, given that remote methods are 
normally large-grained to make up for 
communication overhead, this weaving process 
can be overlapped with the execution of the 
method and may impose little overhead in 
overall execution. For requests that benefit 
greatly from server affinity, this approach may 
be best even with its overhead. 

When a server wishes to shed some of its 
load, it can unweave advice from a client proxy 
to force the proxy to forward its next request 
through the balancer. This requires an extra 
message from server to client while the remote 
method is executing. We can overlap this 
unweaving process with the execution of the 
remote method, just as we did when weaving the 
advice in the balancer. From the perspective of 
the client, a request that involves this unweaving 
takes an average of 8.14ms. It must be noted that 
our tests have an empty method body, so there is 
no overlap between method execution and 
unweaving. As a result, this number is the worst 
case. Again, unweaving can be overlapped with 
method execution to hide some of the cost. 

VI.  APPLICATION 
A. A novel dynamic load balancing scheme for 
parallel systems  
Adaptive mesh refinement (AMR) is a type of 
multiscale algorithm that achieves high 
resolution in localized regions of dynamic, 
multidimensional numerical simulations. This 
scheme interleaves a grid-splitting technique 
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with direct grid movements, for which the 
objective is to efficiently redistribute workload 
among all the processors so as to reduce the 
parallel execution time.  
�. Dynamic Load Balancing in GlassFish 
Application Server�� �

GlassFish is a fully Java EE 5-compliant 
application server with enterprise-ready features 
available under two OSI-approved licenses. 
Among many other enterprise-level features, 
GlassFish provides a very good self-management 
functionality extendable using the Java 
Management eXtension (JMX) standard. The 
GlassFish application server provides good 
facilities for cluster management and load 
balancing. We can use GlassFish self-
management facilities, JMX, and the Application 
Server Management eXtension (AMX) APIs to 
change the load balancer configuration.  
�. Dynamic load balancing of SAMR  

To efficiently utilize computing resources 
provided by distributed systems, an underlying 
DLB scheme must address both heterogeneous 
and dynamic features of distributed systems. We 
also provide a heuristic method to evaluate the 
computational gain and redistribution cost for 
global redistribution. Experiments show that by 
using this distributed DLB scheme, the execution 
time can be reduced by 9%-46% as compared to 
using parallel DLB scheme which does not 
consider the heterogeneous and dynamic features 
of distributed systems. 
D. Dynamic Load Balancing for a Grid 
Application  

Grids functionally combine globally 
distributed computers and information systems 
for creating a universal source of computing 
power and information.  
E. Load Balancing Web Applications  

This provides a simple machine-level 
load-balancing mechanism, but is only 
appropriate for session independent or shared-
session servers.  

VII.  CONCLUSION 
In this paper, we presented a dynamic, aspect 
oriented implementation of load balancing in 
Java RMI. Initial requests from a client are 
directed to a balancer process, which forwards 
the request to a server while simultaneously 
weaving an aspect on the client proxy. The 

woven aspect instructs the client to forward all 
sub sequent requests to a specific server. 
However, if that server needs to shed some of its 
load, it can unweave the aspect to force the client 
to find another server. This approach reduces the 
overhead of having all requests forwarded by a 
balancer process but provides a more dynamic 
ability to redistribute load when necessary. In 
addition, all decisions are made by the server 
based on application needs.    
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