
�

�

Load balancing using java Aspect Component(Java RMI)

Ms. N. D. Rahatgaonkar #1, Prof. Mr. P. A. Tijare *2
Department of Computer Science & Engg and Information Technology

Sipna’s College of Engg & Technology, Amaravati,(M.S.) INDIA
Sant GadgeBaba Amravati University, , Amaravati,(M.S.) INDIA

1nanditarahatgaonkar@gmail.com *2 pritishtijare@rediffmail.com

Abstract- Various types of scheduling algorithms are used by
load balancers to determine which backend server to send a
request to. Simple algorithms include random choice or
round robin. High-performance systems may use multiple
layers of load balancing. Load balancing is the process of
distributing client request over the set of servers and is a key
element of obtaining good performance in distributed
application.. Java RMI extends java with distributed objects
whose methods can be called from remote clients.
Keywords--Load balancing, Scheduling, Remote Method
Invocation

I. INTRODUCTION
In computer networking, load balancing is a
technique to distribute workload evenly across
two or more computers, network links, CPUs,
hard drives, or other resources, in order to get
optimal resource utilization, maximize
throughput, minimize response time, and avoid
overload. Using multiple components with load
balancing, instead of a single component, may
increase reliability through redundancy.
Simple algorithms include random choice or
round robin. More sophisticated load balancers
may take into account additional factors, such as
a server's reported load, recent response times,
up/down status, number of active connections,
geographic location, capabilities, or how much
traffic it has recently been assigned. High-
performance systems may use multiple layers of
load balancing. Java RMI (Remote Method
Invocation) adds remote objects to Java
programs. These remote objects reside on object
servers, separate machines connected by a
invocation, which bundles the information
needed to invoke the method into a message and
sends it to the appropriate object server for
execution. In compute-intensive remote object
programs, clients may be invoking many
expensive methods on servers. In particular, they
may be invoking expensive methods on the same
object, running the risk of decreasing
performance by overloading the server. To
improve performance this object can be
replicated on several servers and requests can be
distributed to a suitable replica, normally the
server with the lightest load. This distribution of
requests is referred to as load balancing, and is
key to good performance in many distributed

applications. We do not assume that workload is
constant and predictable enough that statically
allocating replicas to clients will produce an
optimal solution. We also assume that while the
client must participate in a load balancing
scheme, it does not have sufficient information
to determine the best strategy for invoking
remote objects. That is, we assume the
implementation of the remote objects is in the
best position to select an appropriate load
balancing strategy. This paper shows the use of a
dynamic, distributed AOP(Aspect-oriented
programming) system to modify proxy code on
the client. In contrast, most work in this area
focuses on allowing the client to supply aspects
to modify the server object. Second, this load
balancing strategy is controlled by the balancer
and server processes based on their knowledge of
application requirements. The strategy can be
altered at runtime by these processes as
necessary. This presents background material
covering several topics important to this
research, including Java RMI, aspect-oriented
programming with JAC(Java Aspect
Component), and load balancing.

II. LITERATURE REVIEW
This section focuses on other research in
distributed AOP. Distributed Web-server
architectures that use request routing
mechanisms on the cluster side are free of the
problems of client-based approaches.
Architecture transparency is typically obtained
through a single virtual interface to the outside
world, at least at the URL level. The cluster
DNS(Domain name system)—the authoritative
DNS server for the distributed Web system’s
nodes—translates the symbolic site name (URL)
to the IP address of one server. This process
allows the cluster DNS to implement many
policies to select the appropriate server and
spread client requests. DLB(Dynamic load
balancing) is used to provide application level
load balancing for individual parallel jobs. It
ensures that all loads submitted through the DLB
environment are distributed in such a way that
the overall load in the system is balanced and

N. D. Rahatgaonkar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 NCICT 2010 Special Issue 45

�

�

application programs get maximum benefit from
available resources. In this of the DLB has two
major parts. One is called System Agent that
collects system related information such as load
of the system and the communication latency
between computers. The other is called DLB
Agent which is responsible to perform the load
balancing. System Agent has to run all
configured machine on the environment whereas
DLB Agent is started by the user. The structure
and components of the DLB environment is
shown in Figure 1

Figure 1: Components of DLB

FORMI(Fragmented object RMI) is built on a
fragmented object model, where an object
implementation is split across fragments that can
be individually distributed across a network [4].
Fragments can be used to replicate or partition
objects across the network. In FORMI, a proxy is
a fragment on the client. A fragment can be
replaced with another during execution, allowing
the distribution of responsibilities to change at
runtime. FORMI provides the same exibility as
our aspect-oriented approach, and also does not
impact client code. However, FORMI introduces
its own stub compiler, changing the development
process.
AWED provides a more exible model that
supports the distribution of pointcuts and advice
separately [10]. A pointcut can specify the host
on which a join point applies and the host on
which advice should be run.
AWED permits advice to run on several hosts,
which makes it useful for replication consistency
mechanisms. This research could have used
AWED rather than JAC. One potential problem
with the used of AWED is that it uses new
language constructs to specify pointcuts, and it
does not appear that these constructs can be
parameterized with runtime arguments. The
pointcut() method in JAC does permit such
parameters, making it more exible.��

�����Same way Dynamic Load Balancing
without Packet Reordering, this paper shows that
one can obtain the accuracy and responsiveness
of packet-based splitting and still avoid packet
reordering.This introduce FLARE, a new traffic
splitting algorithm. FLARE exploits a simple
observation. Consider load balancing traffic over
a set of parallel paths Figure2. If the time
between two successive packets is larger than the
maximum delay difference between the parallel
paths, one can route the second packet |and
subsequent packets from this flow| on any
available path with no threat of reordering. Thus,
instead of switching packets or flows, FLARE
switches packet bursts, called flowlets. By
definition, flowlets are spaced by a minimum
interval, chosen to be larger than the delay
difference between the parallel paths under
consideration. FLARE measures the delay on
these paths and sets the flowlet timeout, to their
maximum delay difference. The small size of
flowlets lets FLARE split traffic dynamically
and accurately, while the constraint imposed on
their spacing ensures that no packets are
reordered.

Figure 2: As long as the inter-packet spacing is larger than the
delay difference between the two paths, one can assign the two
packets to different paths without risking packet reordering.

III. ANALYSIS OF PROBLEM
A second option is to augment the object registry
to allow multiple remote objects to register
remote object references using the same name.
When a lookup is per formed, the registry can
return one of the registered references to the
client, and the client invokes methods directly on
that object.
This approach cannot be implemented using the
RMI registry supplied with Java RMI. That
registry does not permit multiple entries for the
same name, instead throwing an exception on
successive attempts to bind with the same name.
Instead, a customized registry must be used.
Examples of this approach include the
SmartRegistry [9] and Jgroup/ARM [8], though
both systems allow multiple registrations to

N. D. Rahatgaonkar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 NCICT 2010 Special Issue 46

�

�

support replication rather than load balancing. In
these systems, the registry returns a proxy with
references to all available replicas for group
communication. In a load balancing system, the
registry would return a single reference to one of
the registered objects.
Another example of this approach is DNS load
balancing. DNS databases can have multiple IP
addresses associated with a name, and DNS
servers can be configured to return different
addresses according to a policy. DNS load
balancing has several limitations. First it can only
return different IP addresses, so all servers on
these hosts must use the same port number.
Second DNS does not check the availability of a
machine before returning its address, so it may
return the address of a crashed server.
A problem with this strategy is that the client
generally caches the object reference and uses it
for all remote method invocations, which limits
the ability to balance load. That is, rather than
redirecting each request from each client to a
different server, this strategy redirects all requests
from a client to the same server. It is possible that
different clients will issue a different number of
remote calls and will cause different loads at their
servers. To redirect requests to another server, a
client would need to obtain a new remote
reference by issuing another lookup to the
registry, and ensure that all client code uses the
new remote object. In DNS load balancing, this
problem is exacerbated by the ability of
intermediate name servers to also cache results,
although this can be mitigated by setting the
time-to-live field on the address entry to expire
relatively quickly Another serious problem with
this strategy is that it falls to the client to detect
and redistribute the load if the server becomes
overwhelmed, by reissuing a lookup request.
There is no simple mechanism for allowing the
server to automatically reduce its load by not
accepting new requests.�
 A load balancer process is placed between
clients and servers. All client requests are
forwarded to the balancer process, which
forwards the request to a suitable server. The
reply message takes the reverse path. This is
shown in Figure3. In Java RMI, the balancer
would maintain a collection of references to
different remote objects. For each incoming

request, one of these remote objects would be
selected and the balancer would invoke the same
method on it, forwarding the request. The return
value of the balancer method would simply
forward the return value from the remote object.
A similar strategy can be used in Apache,
forwarding all requests to an entry server that
rewrites the URL to redirect the request to one of
a set of servers [1].

Figure 3: A Balancer forwarding request and replies

This strategy has the benefit of being able
to redirect each request from each client to a
suitable server. In addition, incorporating new
servers is relatively simple. When a new object
starts on a new server, it could register itself with
the balancer. From that point, the balancer could
distribute requests to the new object. The
balancer can also control the load on the servers
by deciding how many requests to forward to any
given server. Once this number has been reached,
the balancer could queue up requests and forward
them to servers as they complete their
outstanding requests.
However, this strategy adds communication
overhead in the extra pair of messages between
balancer and server. This overhead can be
reduced by having the server reply directly to the
client, which is not possible in Java RMI without
altering the underlying RMI protocol. In addition,
the balancer can potentially form a bottleneck
since all requests must pass through it, though the
amount of processing for each request is small.
However, our approach has a basic security
mechanism in that the client must explicitly run
the proxy in a JAC-aware container to allow the
server to advise it. Finer-grained control is not
possible, though there are several proposals on
how to address this problem [6, 12].
IV PROPOSED WORK

This is to develop systems that dynamically turn
on to be able to handle the load imposed on the
system efficiently.

Our approach to load balancing uses
dynamic, distributed aspects forwarded from
server to client to advise client-side proxy
objects. These aspects allow us to use a balancer

N. D. Rahatgaonkar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 NCICT 2010 Special Issue 47

�

�

process to distribute clients to servers, but also
allow the servers to shed load when necessary.
This paper describes an approach to load
balancing in Java RMI based on dynamic
distributed aspect-oriented programming using
Java Aspect Components (JAC) [13]. Aspect
oriented programming (AOP) allows code (in the
form of advice) to be inserted at specific points
in the execution of a program. Dynamic AOP
systems allow advice to be added and removed at
run- time. JAC also allows advice to be
transmitted over a network and applied to objects
running on other object servers. We use these
capabilities to create a balancer process that
modifies a proxy object on the client to direct its
remote method invocations to a specific replica.

The overall process is shown in Figure 4
We start with what appears to be the standard
solution using a balancer process, where clients
initially send requests to the balancer. Indeed, the
first request from each client is treated using this
standard solution; the request is forwarded to a
suitable server, and the results follow the reverse
path. This is shown in messages 1, 3, 4, and 5.
However, the balancer also dynamically weaves
a JAC aspect on the client proxy while the
request is being processed (message 2). This
aspect alters the proxy to forward requests to a
specific server. Thus, all subsequent requests are
forwarded directly from client to the selected
server (messages 6 and 7). Importantly, the
balancer applies the aspect to the client when it is
blocked awaiting the reply to its remote method
invocation. This removes many of the potential
concurrency problems that can arise in this type
of system.
 A client is assigned to a given server and all
requests are forwarded to the single location.
Here, we exploit the ability to dynamically
unweave an aspect in JAC. If the server is
overloaded, it can unweave the aspect from the
client proxy. After this unweaving, the next
request from that client is forwarded to the
balancer process, which then applies a new aspect
to forward client requests to another server. That
is, once the aspect is unwoven, the scenario in
Figure repeats itself for the client, except that the
client may be associated with a new server.
Again, this unweaving is performed when the

client is blocked awaiting a reply to reduce
potential concurrency problems.

Figure 4: Load balancing with dynamic remote aspect

This style of load balancing addresses the
limitations of the two schemes presented in
above Section. It avoids the need for the load
balancer to be involved with each request,
reducing its load and reducing the network
latency of forwarding each request. It avoids the
problem of clients caching information, since
that information is now held in as aspect to
which the client is oblivious. It also allows the
server to shed load by unweaving aspects from
clients, so they can be directed to new servers.

V. IMPLICATION
This style of load balancing addresses the

limitations of the two schemes presented in above
Section. It avoids the need for the load balancer
to be involved with each request, reducing its
load and reducing the network latency of
forwarding each request. It avoids the problem of
clients caching information, since that
information is now held in as aspect to which the
client is oblivious. It also allows the server to
shed load by unweaving aspects from clients, so
they can be directed to new servers.

One desirable property of our strategy is
that it lends itself to balancing client sessions,
where a session is a series of individual requests
that form one larger, logical request. It can be
advantageous to forward all requests for a single
session to the same server, but balance different
sessions to different servers. In our strategy, the
server can achieve this by simply unweaving
advice from a client at the end of a session

In assessing our load balancing strategy,
we first assessed the overhead of the first request
by the client, which requires the balancer to not
only forward the request to the server but also

N. D. Rahatgaonkar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 NCICT 2010 Special Issue 48

�

�

weave advice into the client. From the
perspective of the client, this first requests takes
its an average. Note that we made sure to
unweave the advice between successive calls to
avoid any additional overhead that may
accumulate by repeatedly weaving advice on the
same join point. To reduce the overhead of this
weaving, it is done by a separate thread that runs
while the balancer forwards the method
invocation to a server.

As a baseline, we measured the
performance of the first load balancing strategy,
where all requests must be forwarded through the
balancer before being directed to an appropriate
server. From the perspective of the client,
requests take an average of 0.51ms per round
trip. The request is simply forwarded to the
server. In assessing our load balancing strategy,
we first assessed the overhead of the first request
by the client, which requires the balancer to not
only forward the request to the server but also
weave advice into the client. From the
perspective of the client, this first requests takes
an average of 5.64 ms. Note that we made sure to
unweave the advice between successive calls to
avoid any additional overhead that may
accumulate by repeatedly weaving advice on the
same join point. To reduce the overhead of this
weaving, it is done by a separate thread that runs
while the balancer forwards the method
invocation to a server. After the first request, the
advice woven at the client proxy forwards all
subsequent requests directly to the server without
involving the balancer. This avoids the overhead
of an extra exchange of messages, but incurs the
overhead of invoking advice woven on the client
proxy. Some aspect-oriented constructs can incur
a significant performance penalty in ways that
are not obvious [2]. In particular, around advice
may include closure objects, which are expensive
to create and use. JAC uses Java Reflection
which can be expensive. However, our balancing
advice replaces the client proxy code rather than
invoking it. To assess the overhead of the advice
at the client proxy, we measured the cost of a
remote method invocation with an advised proxy
and the cost of normal remote method invocation
directly from client to server. These two
measurements give us the overhead of applying
aspects to the client proxy. From the perspective

of the client, the cost of a remote method with a
balancing aspect was measured to average 0.357
ms per requests, which was identical to a round
trip with an unadvised proxy. The advice adds no
appreciable overhead to the execution of the
proxy on the client. Our aspect-oriented version,
which allows requests to be sent directly to a
server after the first request, cuts 0.153 ms from
each request, a savings of 30%. However, this
does come at the cost of weaving, which takes
5.64 ms in JAC. This requires clients to forward
44 requests to a given server to make up for this
extra cost. Again, though, this represents a lower
bound since our experimental setup does not
include any scheduling decisions, computation,
or significant data transfer for method arguments
and return values. In a more realistic
environment, we expect this number to be lower.
In particular, given that remote methods are
normally large-grained to make up for
communication overhead, this weaving process
can be overlapped with the execution of the
method and may impose little overhead in
overall execution. For requests that benefit
greatly from server affinity, this approach may
be best even with its overhead.

When a server wishes to shed some of its
load, it can unweave advice from a client proxy
to force the proxy to forward its next request
through the balancer. This requires an extra
message from server to client while the remote
method is executing. We can overlap this
unweaving process with the execution of the
remote method, just as we did when weaving the
advice in the balancer. From the perspective of
the client, a request that involves this unweaving
takes an average of 8.14ms. It must be noted that
our tests have an empty method body, so there is
no overlap between method execution and
unweaving. As a result, this number is the worst
case. Again, unweaving can be overlapped with
method execution to hide some of the cost.

VI. APPLICATION
A. A novel dynamic load balancing scheme for
parallel systems
Adaptive mesh refinement (AMR) is a type of
multiscale algorithm that achieves high
resolution in localized regions of dynamic,
multidimensional numerical simulations. This
scheme interleaves a grid-splitting technique

N. D. Rahatgaonkar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 NCICT 2010 Special Issue 49

�

�

with direct grid movements, for which the
objective is to efficiently redistribute workload
among all the processors so as to reduce the
parallel execution time.
�. Dynamic Load Balancing in GlassFish
Application Server�� �

GlassFish is a fully Java EE 5-compliant
application server with enterprise-ready features
available under two OSI-approved licenses.
Among many other enterprise-level features,
GlassFish provides a very good self-management
functionality extendable using the Java
Management eXtension (JMX) standard. The
GlassFish application server provides good
facilities for cluster management and load
balancing. We can use GlassFish self-
management facilities, JMX, and the Application
Server Management eXtension (AMX) APIs to
change the load balancer configuration.
�. Dynamic load balancing of SAMR

To efficiently utilize computing resources
provided by distributed systems, an underlying
DLB scheme must address both heterogeneous
and dynamic features of distributed systems. We
also provide a heuristic method to evaluate the
computational gain and redistribution cost for
global redistribution. Experiments show that by
using this distributed DLB scheme, the execution
time can be reduced by 9%-46% as compared to
using parallel DLB scheme which does not
consider the heterogeneous and dynamic features
of distributed systems.
D. Dynamic Load Balancing for a Grid
Application

Grids functionally combine globally
distributed computers and information systems
for creating a universal source of computing
power and information.
E. Load Balancing Web Applications

This provides a simple machine-level
load-balancing mechanism, but is only
appropriate for session independent or shared-
session servers.

VII. CONCLUSION
In this paper, we presented a dynamic, aspect
oriented implementation of load balancing in
Java RMI. Initial requests from a client are
directed to a balancer process, which forwards
the request to a server while simultaneously
weaving an aspect on the client proxy. The

woven aspect instructs the client to forward all
sub sequent requests to a specific server.
However, if that server needs to shed some of its
load, it can unweave the aspect to force the client
to find another server. This approach reduces the
overhead of having all requests forwarded by a
balancer process but provides a more dynamic
ability to redistribute load when necessary. In
addition, all decisions are made by the server
based on application needs.

REFERENCES
[1] Apache HTTP Server Project. URL Rewriting Guide, 2008.
http://httpd.apache.org/docs/2.2/misc/rewriteguide.html.
[2] B. Dufour et al. Measuring the dynamic behaviour of AspectJ
programs. In Proceedings of the 19th Annual Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages
150–169, 2004.
[3] jGuru. Remote Method Invocation: Tutorial and Code Camp, 2000.
http://java.sun.com/developer/onlineTraining/rmi/RMI.html.
[4] R. Kapitza, J. Domaschka, F. Hauck, H. Reiser, and H.
Schmidt.FORMI: Integrating adaptive fragmented objects into Java RMI.
IEEE Distributed Systems Online, 7(10), 2006.
[5] G. Kiczales et al.Aspect-oriented programming. In Proc. 11th
European Conference on Object–Oriented Programming, volume 1241 of
LNCS, pages 220–242. Springer-Verlag, 1997.
[6] D. Larochelle et al. Join point encapsulation. In Proceedings of the
2003 Workshop on Software Engineering Properties of not possible,
though there are several proposals
[7] C. Lopes. D: A Language Framework for Distributed Programming.
PhD thesis, College of Computer Science, Northeastern University, 1997.
[8] H. Meling et al. Jgroup/ARM: A distributed object group platform
with autonomous replication management. Software: Practice and
Experience, 2008. [9] N. Narasimhan et al. Interceptors for Java remote
method invocation. Concurrency and Computation: Practice and
Experience, 13(8-9):755–774, 2001. [10] L. Navarro et al. Explicitly
distributed AOP using AWED. In Proceedings of the 5th International
Conference on Aspect-Oriented Software Development, pages 51–62,
2006.
[11] M. Nishizawa et al. Remote pointcut: A language construct for
distributed AOP. In Proc. 3rd International Conference on Aspect-
Oriented Software Development, pages 7–15, 2004.
[12] H. Ossher. Confirmed join points. In Proceedings of the 2006
Workshop on Software Engineering Properties of Languages for Aspect
Technologies, 2006.
[13] R. Pawlak et al. JAC: An aspect-based distributed dynamic
framework. Software: Practice and Experience, 34(12):1119–1148, 2004.
[14] N. Santos et al. A framework for smart proxies and interceptors in
RMI. In Proceedings of the 15th ISCA International Conference on
Parallel and Distributed Computing Systems, 2002.
[15] A. Stevenson and S. MacDonald. Smart proxies in java rmi with
dynamic aspect-oriented programming. In Proceedings of the 2008
International Workshop on Java and Components for Parallelism,
Distribution and Concurrency, 2008.
[16] Sun Microsystems, Inc. Dynamic Proxy Classes, 2004.
http://java.sun.com/j2se/1.5.0/docs/guide/re ection/-proxy.html��
[17] Andrew Stevenson and Steve MacDonald: Dynamic Aspect-
Oriented Load Balancing in Java RMI
[18] R.U. Payli, E. Yilmaz, A. Ecer, H.U. Akay, and S. Chien: DLB – A
Dynamic Load Balancing Tool for Grid Computing
[19] Srikanth Kandula Dina Katabi Shantanu Sinha Arthur Berger:
Dynamic Load Balancing Without Packet Reordering

N. D. Rahatgaonkar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 NCICT 2010 Special Issue 50

