
CACHE COHERENCE IN CENTRALIZED SHARED MEMORY AND
DISTRIBUTED SHARED MEMORY ARCHITECTURES

 Sujit Deshpande#1, Priya Ravale*2, Sulabha Apte#3

Lecturer, CSE Department, Walchand Institute of Technology, Solapur, Solapur University, Solpaur, Maharashtra, India.
* Lecturer, IT Department, Walchand Institute of Technology, Solapur, Solapur University, Solpaur, Maharashtra, India.

Professor, CSE Department, Walchand Institute of Technology, Solapur, Solapur University, Solpaur, Maharashtra, India.

1sujit.sujitdeshpande@gmail.com, *2priyaravale@rediffmail.com, 3aptesulabha@gmail.com

Abstract— In the field of distributed and parallel
computing the common term is multiprocessor
architectures. The multiprocessor architectures may
have centralized shared memory or distributed
shared memory. These systems may not be useful
when the number of processors is large as the
bandwidth on the memory becomes excessive and this
produces a bottleneck. Significant reduction with the
problem of memory bandwidth can be resolved by
inclusion of large caches with processors. But
inclusion of caches with processors creates the
problem of cache coherence. This paper presents
cache coherence problem and solution on it, in
multiprocessor architectures with various protocols
of cache coherence. It compares and discuses benefits
and limitations of protocols.

Keywords—Cache coherence, Distributed Shared
Memory, Write Invalidate, Write Update

I. INTRODUCTION
Distributed computing refers to the

use of distributed systems to solve
computational problems. In distributed
computing, a problem is divided into many
tasks, each of which is solved by one
computer. Parallel computing is a form of
computation in which many calculations
are carried out simultaneously, operating
on the principle that large problems can
often be divided into smaller ones, which
are then solved concurrently ("in
parallel").

As power consumption (and
consequently heat generation) by
computers has become a concern in recent
years, parallel computing has become the
dominant paradigm in computer
architecture, mainly in the form of
multicore processors.[5]

II. LITERATURE SURVEY
The terms "concurrent computing",

"parallel computing", and "distributed

computing" have a lot of overlap, and no
clear distinction exists between them. The
same system may be characterized both as
"parallel" and "distributed"; the processors
in a typical distributed system run
concurrently in parallel. Parallel
computing may be seen as a particular
tightly-coupled form of distributed
computing, and distributed computing may
be seen as a loosely-coupled form of
parallel computing. Nevertheless, it is
possible to roughly classify concurrent
systems as "parallel" or "distributed" using
the following criteria:

 In parallel computing, all processors
have access to a shared memory.
Shared memory can be used to
exchange information between
processors.

 In distributed computing, each
processor has its own private memory
(distributed memory). Information is
exchanged by passing messages
between the processors.

Fig. 1 – Distributed and Parallel Systems

Sujit Deshpande et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 NCICT 2010 Special Issue 39

The Fig. 1 illustrates the difference
between distributed and parallel systems.
Fig. 1 - (a) is a schematic view of a typical
distributed system; as usual, the system is
represented as a graph in which each node
(vertex) is a computer and each edge (line
between two nodes) is a communication
link. Fig.1 - (b) shows the same distributed
system in more detail: each computer has
its own local memory, and information can
be exchanged only by passing messages
from one node to another by using the
available communication links. Fig.1 - (c)
shows a parallel system in which each
processor has a direct access to a Shared
memory. With the above discussion we
can say distributed computing uses
distributed memory while parallel
computing uses shared memory concepts.
Both of them has some advantages and
disadvantages listed below
Distributed Memory
 - Scales well
 - Difficult to program
 - Message passing or RPC based
Shared Memory
 - Easy to program
 - Difficult to build

 - Tight coupling in hardware
Advantages of both distributed memory
and shared memory can be merged and
limitations of both can be overcome in
Distributed shared memory with
advantages listed below.
Logically shared memory
Physically distributed local memories
Page based
Shared pages
Demand paging between nodes.

III. CACHE COHERENCE
In this paper we have discussed cache
coherence in centralized shared memory
and distributed shared memory
architectures.There are two types of
MIMD machine depending upon whether
memory is locally assigned to each
processor, or all processors communicate

with the same central memory. This
second option is called centralized shared-
memory architectures, and is shown in Fig.
2.[1]

Fig. 2 – Centralized shared memory architecture

This kind of architecture is very useful for
multiprocessor workstations such as Sun
Ultra-SPARC workstations. It is not very
useful when the number of processors
becomes large as the bandwidth on the
memory becomes excessive and this
produces a large bottleneck. For large
arrays of multiprocessors a distributed
shared memory approach is more suitable
as shown in FIG. 3: [6]

Fig. 3 – Distributed shared memory architecture

Significant reduction with the problem of
memory bandwidth can be resolved by
inclusion of large caches with processors.
The architecture supports the caching of
both shared and private data. Private data
is used by a single processor, while shared
data is used by multiple processors;
essentially providing communication
among the processors through reads and
writes of shared data. When private data is
cached, its location is migrated to the
cache, reducing the average access time as

Sujit Deshpande et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 NCICT 2010 Special Issue 40

well as the memory bandwidth required.
Since no other processor uses the data, the
program behavior is identical to that in a
uniprocessor. When shared data are
cached, the shared value may be replicated
in multiple caches. In addition to the
reduction in access latency and required
memory bandwidth, this replication also
provides a reduction in contention that
may exist for shared data items that are
being read by multiple processors
simultaneously. Caching of shared data,
however, introduces a cache coherence
problem.

In computing, cache coherence
(also cache coherency) refers to the
consistency of data stored in local caches
of a shared resource. When clients in a
system maintain caches of a common
memory resource, problems may arise
with inconsistent data. This is particularly
true of CPUs in a multiprocessing system.
Referring to the Fig. 4, if the top client
has a copy of a memory block from a
previous read and the bottom client
changes that memory block, the top client
could be left with an invalid cache of
memory without any notification of the
change.

Fig. 4 – Multiple Caches of Shared Resource

TABLE I illustrates cache – coherence
problem.

Fig. 5 – The cache – coherence problem for a single
memory location, read and written by two processors.

TABLE I
The cache – coherence problem for a
single memory location (X), read and
written by two processors (A and B).

Time Event
Cache

contents for
CPU A

Cache
contents for

CPU B

Memory
contents for
location X

0 1

1 CPU A reads X 1 1

2 CPU B reads X 1 1 1

3
CPU A stores 0

into X
0 1 0

Cache coherence is intended to manage
such conflicts and maintain consistency
between cache and memory.
Two policies are used to overcome the
cache coherence problem
1. Write Back or Write Invalidate
2. Write through or Write Broadcast
or Write Update
Write Invalidate vs. Write Update
Strategies
1. Write Invalidate : On a write, all other
caches with a copy are invalidated
2. Write Update : On a write, all other
caches with a copy are updated
• Write Invalidate is bad when :
– single producer and many consumers of
data.
• Write Update is bad when :
– multiple writes by one PE before data is
read by another PE.
– Junk data accumulates in large caches
(e.g. process migration).
– Efficiency of Interconnection network
(ICN) decreases.
• Overall, Write invalidate scheme is more
popular as the default.
The protocols to maintain coherence for
multiple processors are called cache –
coherence protocols. They are –
1. Snooping Protocol – for centralized
shared memory architectures
2. Directory Based Protocol – for
distributed shared memory architectures

1. Snooping protocol – Every cache that
has a copy of the data from a block of
physical memory also has a copy of the
sharing status of the block, and no
centralized state is kept. The caches are
usually on a shared – memory bus, and all

Sujit Deshpande et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 NCICT 2010 Special Issue 41

cache controllers monitor or snoop on the
bus to determine whether or not they have
a copy of a block that is requested on the
bus. This protocol is useful for small
systems as shown in Fig. 2. [6]

TABLE II
 Requests from processor & the bus and

responds to these based on their type.
Request Source State of

addressed
cache block

Function

Read hit Processor Shard or
exclusive

Read data in cache

Read miss Processor Invalid Place read miss on bus
Read miss Processor Shared Address conflict miss; place read

miss on bus.
Read miss Processor Exclusive Address conflict miss; write back

block, then place read miss on
bus

Write hit Processor Exclusive Write data in cache
Write hit Processor Shared Place write miss on bus
Write miss Processor Invalid Place write miss on bus
Write miss Processor Shared Address conflict miss; place

write miss on bus
Write miss Processor Exclusive Address conflict miss; write back

block, then place write miss on
bus

Read miss Bus Shared No action, allow memory to
service read miss

Read miss Bus Exclusive Attempt to share data; place
cache block on bus and change
state to shared.

Write miss Bus Shared Attempt to write shared block;
invalidate the block.

Write miss Bus Exclusive Attempt to write block that is
exclusive elsewhere; write back
the cache block and make its
state invalid.

As write invalidate is preferable than write
update snooping protocol is implemented
using write invalidate policy.
In this protocol cache controllers
(snoopers) continuously snoop (monitor)
the bus, watching the addresses. It checks
whether the address on the bus is in their
cache and if so, it takes respective actions
depending on the request either by
processor or bus. The cache coherence
mechanism receives requests from both the
processors and the bus and responds to
these, based on the type of request,
whether it hits or misses in the cache, and
the state of the cache block specified in the
request. Fig.6 shows the finite state
transition diagram for a single cache block
with all above listed requests and functions
for respective request.
2. Directory based protocol – The sharing
status of a block of physical memory is
kept in just one location, called the
directory.[3]

Fig. 6 – Cache – coherence state transition diagram with
the state transitions induced by the local processor and
the bus activities.

This protocol considers the system as
shown below

Fig. 7 – Distributed shared memory multiprocessor
architecture with directories.

A directory is added to each node to
implement cache coherence in a
distributed memory multiprocessors. Each
directory is responsible for tracking the
caches that share the memory addresses of
the portion of memory in the node. The
directory may communicate with the
processor and memory over ICN, as
shown. Like snooping protocol, there are
two primary operations that a directory
protocol must implement : handling a read
miss and handling a write to a shared,
clean cache block. To implement these
operations directory must track the state of
each cache block. In a simple protocol,
these states could be the following :
Shared – One or more processors have the
block cached, and the value in memory is
up to date.
Uncached – No processor has a copy of
the cache block.

Sujit Deshpande et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 NCICT 2010 Special Issue 42

Exclusive – Exactly one processor has a
copy of the cache block, and it has written
the block, so the memory copy is out of
date. The processor is called the owner of
the block.
With these states of cache block, we must
track the processors that have copies of the
block when it is shared, since they will
need to be invalidated on write. The
simplest way to do this is to keep bit
vector for each memory block as shown
below. When the block is shared, each bit
of the vector indicates whether the
corresponding processor has a copy of that
block as shown in Figure. We can also use
the bit vector to keep track of the owner of
the block when the block is in the
exclusive state as shown in Figure.
C – Block is cached
S – Block is Shared
E – Block is Exclusive

TABLE III
Example of bit vector

Processors P1 P2 Pn

Blocks
Status in
Memory

C/U S/E C/U S/E
C/
U

S/E

B1 Valid C S C S U
B2 Valid C S U U
Bn Valid C Invalid C E U

In this protocol, the communication
between processors and directories can
happen by sending the messages. Different
messages are listed below which are sent
among nodes. The nodes categorized as
Local node : It is the node where requests
originates.
Home node : It is the node where the
memory location and directory entry of an
address reside.
Remote node : Copies exist at third node,
called remote node.[4]
A remote node is the node that has a copy
of a cache block, whether exclusive or
shared. A remote node may be the same as
either the local node or the home node. In
such cases, the basis protocol does not
change, but interprocessor messages may
be replaced with intraprocessor messages.
The possible messages sent among nodes
to maintain coherence, along with the

source and destination node, the contents
(where P = requesting processor number,
A = requested address, and D = data
contents), and the function of the message,
listed in TABLE 4.State transition diagram
for an individual cache block in a directory
– based system is shown in Fig.8. In the
state diagram requests by the local
processor and from the home directory are
shown. The states are identical to those in
snooping protocol, and the transactions are
very similar, with explicit invalidate and
write – back requests replacing the write
misses that were formerly broadcast on the
bus. [3][4][6]

TABLE IV
Possible messages sent among nodes to

maintain coherence
Message
Type

Source Destination Function of this message

Read miss Local
Cache

Home
directory

Processor P has a read miss at
address A; request data and
make P a read sharer.

Write miss Local
Cache

Home
directory

Processor P has a write miss
at address A; request data and
make P the exclusive owner.

Invalidate Home
directory

Remote
Cache

Invalidate a shared copy of
data at address A.

Fetch Home
directory

Remote
Cache

Fetch the block at address A
and send it to its home
directory ; change the state of
A in the remote cache to
shared

Fetch /
Invalidate

Home
directory

Remote
Cache

Fetch the block at address A
and send it to its home
directory ; invalidate the
block in the cache.

Data Value
Reply

Home
directory

Local Cache Return a data value from the
home memory.

Data Write
Back

Remote
Cache

Home
Directory

Write back a data value for
address A.

In this protocol the directory implements
the other half of the coherence protocol. A
message sent to a directory causes two
different types of actions: updates of the
directory state and sending additional
messages to satisfy the request. The states
in the directory represent the three
standard states for a block as uncached,
shared , exclusive. The Figure shows the
actions taken at the directory in response
to message received. The directory
receives three different requests: read
miss, write miss, and data write back.

Sujit Deshpande et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 NCICT 2010 Special Issue 43

Fig.8 – Cache – coherence state transition diagram

The state transition diagram for the
directory has the same states and structure
as the transition diagram for an individual
cache.

Fig.9 – Cache – coherence state transition diagram for
directory

COMPARISON BETWEEN SNOOPING
AND DIRECTORY BASED PROTOCOL

Snooping protocols tend to be faster, if
enough bus bandwidth is available, since
all transactions are a request/response seen
by all processors. The drawback is that
snooping isn't scalable. Every request must
be broadcast to all nodes in a system,
meaning that as the system gets larger, the
size of the (logical or physical) bus and the
bandwidth it provides must grow.
Directories, on the other hand, tend to have
longer latencies, but use much less
bandwidth since messages are point to

point and not broadcast. For this reason,
many of the larger systems use this type of
cache coherence.

IV. CONCLUSION
In this paper we have discussed about
centralized shared memory and distributed
shared memory architectures with cache
coherence protocols. Cache coherence is
an important part of multiprocessor
systems without which the performance
degrades. In general, the directory based
protocol is more used for larger systems to
enhance their performance; while
snooping protocol is used for smaller
systems.

FUTURE SCOPE
The concept of cooperative caching can be
introduced instead of cache allotted to
each processor. So that caches can be used
more efficiently.[2]

REFERENCES
[1] Dubois, M. ; Briggs, F.A. ; - Effects of Cache
 Coherency in Multiprocessors Computers, IEEE
 Transactions on Volume: C-31 , Issue: 11 Digital
 Object Identifier: 10.1109/TC.1982.1675925
 Publication Year: 1982 , Page(s): 1083 - 1099
[2] Jing Zhao, Student Member, IEEE, Ping Zhang,
 Guohong Cao, Senior Member, IEEE, and Chita R.
 Das, Fellow, IEEE - Cooperative Caching in Wireless
 P2P Networks: Design, Implementation, and
 Evaluation
[3] Lenoski, D. ; Laudon, J. ; Gharachorloo, K. ; Gupta,
 A. ; Hennessy, J. ; - The directory-based cache
 coherence protocol for the DASH multiprocessor;
 Computer Architecture, 1990. Proceedings., 17th
 Annual International Symposium on Digital Object
 Identifier: 10.1109/ISCA.1990.134520
 Publication Year: 1990 , Page(s): 148 - 159
[4] Agarwal, A. ; Simoni, R. ; Hennessy, J. ; Horowitz,
 M. ;- An evaluation of directory schemes for cache
 Coherence; Computer Architecture, 1988.
 Conference Proceedings. 15th Annual International
 Symposium on Digital Object Identifier:
 10.1109/ISCA.1988.5238 Publication Year: 1988 ,
 Page(s): 280 - 289
[5] Sinha, P. ;- Fundamentals of Distributed computing;
 Distributed Operating Systems:Concepts and Design
 Digital Object Identifier: 10.1109/9780470544419.
 ch1 Publication Year: 1996 , Page(s): 1 - 45
 Copyright Year: 1997
[6] David A. Patterson, John L. Hennessy, – Computer
 Architecture – a quantitative approach ; 3rd edition
 published by Morgan Kaufman Publishers
 Publication date : January 2003.

Sujit Deshpande et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 NCICT 2010 Special Issue 44

