

A Study of Motion Planning Algorithms for Mobile Robots

 Savita Kshirsagar, Kamini Shukla

Department of CSE , Priyadarshini Institute of Engg. & Tech., Affiliated to Nagpur University Nagpur , India

Department of MCA , Priyadarshini Institute of Engg. & Tech., Affiliated to Nagpur University Nagpur , India

savitap_kshirsagar@rediffmail.com kamini_shukla@yahoo.co.in

 Abstract---This paper introduces a study of motion planning

algorithms for mobile robots in which we addresses the

problem of designing provable path planning algorithm in

the frame work of the model with incomplete information.

We introduces two such algorithms are called Bug

algorithms that uses less sensing information than any other

within the family of bug algorithm. This paper present the

first approach to visibility-based potential application areas

include surveillance, high risk military operations, video

game design search-and-rescue efforts, firefighting, and law

enforcement. Research findings can be applied not only to

robotics but to planning routes on circuit boards, directing

digital actors in computer graphics, robot-assisted surgery

and medicine, and in novel areas such as drug design and

protein folding.

 Keywords--- Bug Algorithm, Path Planning, Bug 2

I. INTRODUCTION

 The current research on robot path

planning can be classified into two large

categories depending on which of the two

following basic models is being used. In the

first model, called path planning with complete

information, perfect information about the

obstacles is assumed. In the second model,

called path planning with incomplete

information, an element of uncertainty about

the environment is present. Another important

distinction can be made between the provable

and heuristic approaches. In these terms, this

paper addresses the problem of designing

provable path-planning algorithms in the

framework of the model with incomplete

information.

The robot is unable to access precise

information regarding position coordinates,

angular coordinates, time, but is nevertheless

able to navigate itself to a goal among

unknown piecewise-analytic obstacles in the

plane. The only sensor providing real values is

an intensity sensor, which measures the signal

strength emanating from the goal. The signal

intensity function may or may not be

symmetric; the main requirement is that the

level sets are concentric images of simple

closed curves, i.e. topological circles.

Convergence analysis and distance bounds are

established for the presented approach.

 Navigation in an unknown

environment is a classical robotics problem.

Typically, the robot must gather information

about the obstacles in the environment, its

position coordinates, orientation, and much

more. If limited sensors deny the robot access

to this information, one may wonder if it can

complete any task of significance. Various

portions of the radio wave spectrum are sensed

by numerous devices, including submarines,

wireless heart monitors, radios, televisions,

mobile phones, and anything with Bluetooth.

The main question in this project is: Can we get

a robot navigate to the source of a transmitter

among unknown obstacles while only being able

to sense the signal intensity and estimate its

local gradient? Yes we can.

Bug algorithms are special type of path finding

algorithms. These algorithms are classical and

widely used for sensor-based path finder. There

are different types of algorithms: Bug 1[1], Bug

2[1], Tangent Bug [2], Dist Bug [5], Wedge

Bug [8], and Rover Bug [6], all of them usually

called "Bug algorithms".

The purpose of this paper is to generate a

collision-free path by using the boundary-

following and the motion-to-goal behaviors.

The Bug’s family has three assumptions about

Savita Kshirsagar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 NCICT 2010 Special Issue 34

the mobile robot: i) the robot is a point, ii) it has

a perfect localization, and iii) its sensors are

precise.

A Bug 1 Algorithm

Perhaps the most straight forward path

planning approach is to move toward the goal,

unless an obstacle is encountered, in which case,

circumnavigate the obstacle until motion

toward the goal is once again allowable.

Essentially, the Bug l algorithm formalizes the

"common sense" idea of moving toward the

goal and going around obstacles. The robot is

assumed to be a point with perfect positioning

with a contact sensor that can detect an

obstacle boundary if the point robot "touches"

it. The robot can also measure the distance d(x,

y) between any two points x and y. Finally,

assume that the workspace is bounded. Let

Br(x) denote a ball of radius r centered on x,

i.e., Br(x) = {y € R
2

| d(x,y) < r}. The fact

that the workspace is bounded implies that for

all x € W, there exists an r such that W C Br(x).

The start and goal are labeled Start and Goal,

respectively. Let Start= Start and the m-line be

the line segment that connects Start to Goal.

Initially, i = 0. The Bug l algorithm exhibits

two behaviors: motion-to-goal and boundary-

following. During motion-to-goal, the robot

moves along the m-line toward Goal until it

either encounters the goal or an obstacle. If the

robot encounters an obstacle, let H1 be the point

where the robot first encounters an obstacle and

call this point a hit point. The robot then cir-

cumnavigates the obstacle until it returns to H1.

Then, the robot determines the closest point to

the goal on the perimeter of the obstacle and

traverses to this point. This point is called a leave

point and is labeled L1. From L1, the robot heads

straight toward the goal again, i.e., it reinvokes

the motion-to-goal behavior. If the line that

connects L1 and the goal intersects the current

obstacle, then there is no path to the goal; note

that this intersection would occur immediately

"after" leaving L1. Otherwise, the index i is

incremented and this procedure is then repeated

for Li and Hi until the goal is reached or the

planner determines that the robot cannot reach

the goal (figures 2.1, 2.2). Finally, if the line to

the goal “grazes” an obstacle, the robot need not

invoke a boundary following behavior, but rather

continues onward toward the goal.

Figure 2.1- The Bug 1 Algorithm finds the goal successfully.

 Figure 2.2-The Bug 1 Algorithm cannot find the goal.

Bug 1 Algorithm is the simplest algorithm

among Bug Algorithms. It goes toward goal

and if it faces obstacles then it follows

boundary of the obstacle as measuring distance

between current position and goal. After getting

back to initial position, it finds the shortest

points and goes that point. It does this process

until getting to goal.

This algorithm is quite exhausted because robot

should all perimeters of obstacles and in worst

case 1.5 times of all perimeters of the obstacles

robot faces. This makes robot exhausted and

Savita Kshirsagar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 NCICT 2010 Special Issue 35

sometimes it can fall in infinite loop. Also it has

more memory to store all the value of

perimeters of obstacles. Each value of perimeter

compare with the value of Goal point.

The Bug1 algorithm is the most naive of the

three algorithms in a sense that it only uses the

range data to cut corners and move around the

obstacle until if finds a point closest to the

target. The robot then moves ahead from this

closest point towards the goal point. The

procedure Bug l is to be executed at any point

of a continuous path. The goal is to generate a

path from the Start to the Goal. When meeting

an ith obstacle, a hit point Hi i = 1, 2 ,

When leaving the ith obstacle, to continue its

travel toward the Goal, It defines a leave point

Li initially, i= 1; L0 = Start.

II Bug 2 Algorithms

Like its Bug 1 sibling, the Bug 2 algorithm

exhibits two behaviors: motion-to-goal and

boundary-following. During motion-to-goal, the

robot moves toward the goal on the m-line;

however, in Bug 2 the m-line connects Start and

Goal, and thus remains fixed. The boundary-

following behavior is invoked if the robot

encounters an obstacle, but this behavior is

different from that of Bug l. For Bug 2, the robot

circumnavigates the obstacle until it reaches a

new point on the m-line closer to the goal than

the initial point of contact with the obstacle. At

this time, the robot proceeds toward the goal,

repeating this process if it encounters an object.

If the robot re-encounters the original departure

point from the m-line, then the robot concludes

there is no path to the goal (figures 2.3, 2.4).

Figure 2.3- The Bug 2 Algorithm finds the goal successfully.

Figure 2.4- The Bug 2 Algorithm can not find goal.

Let x € Wi C R
2
 be the current position of the

robot, i = 1, and Start be the start location.

At first glance, it seems that Bug 2 is a more

effective algorithm than Bug l because the robot

does not have to entirely circumnavigate the

obstacles; however, this is not always the case.

This can be seen by comparing the lengths of

the paths found by the two algorithms. For

Bug l, when the ith obstacle is encountered,

the robot completely circumnavigates the

boundary, and then returns to the leave

point. In the worst case, the robot must

traverse half the perimeter, pi, of the

obstacle to reach this leave point. Moreover,

in the worst case, the robot encounters all n

obstacles. If there are no obstacles, the robot

must traverse a distance of length d (Start,

Goal).

A casual examination of (2.1) and (2.2) shows

that Bug 2 can be arbitrarily longer than Bug

Savita Kshirsagar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 NCICT 2010 Special Issue 36

1. This can be achieved by constructing an

obstacle whose boundary has many

intersections with the m-line. Thus, as the

"complexity" of the obstacle increases, it

becomes increasingly likely that Bug l could

outperform Bug 2 (figure 2.4).

In fact, Bug l and Bug 2 illustrate two basic

approaches to search problems. For each

obstacle that it encounters, Bug l performs

an exhaustive search to find the optimal

leave point. This requires that Bug l

traverse the entire perimeter of the

obstacle, but having done so, it is certain

to have found the optimal leave point. In

contrast, Bug 2 uses and opportunistic

approach. When Bug 2 finds a leave point

that is better than any it has seen before, it

commits to that leave point. Such an

algorithm is also called greedy, since it opts

for the first promising option that is found.

When the obstacles are simple, the greedy

approach of Bug 2 gives a quick payoff, but the

obstacles are complex, the more conservative

approach of Bug 1 often yields better

performance.

The Bug 2 Algorithm is improved algorithm in

some sense because it does not have to follow

all perimeters of the obstacles it faces.

 Figure 2.5- Bug 2 algorithm with complex obstacle .

It leaves the obstacles when it meets

intersection between line from start point to

goal point and obstacles if possible. In that case

we do not have that much of memory than Bug

1, but all these depend on the obstacles present

in that environment. If obstacle is more

complex or bug select wrong direction then this

technique cause serious problem. As I

mentioned, if bug selects wrong direction in

escaping spiral obstacle, it has to take a walk

even much more than Bug 1 algorithm.

Example shows how it works and situation

when exhausted and when failed. In Bug 2

algorithms.

A desirable path to the goal point Goal, called

the M-line is introduced as a straight-line

segment that connects the start point and the

goal point. An elementary operation of defining

the next intermediate target point is executed by

the robot at every moment given its current

position and the range data within the current

field of vision. Then the robot makes a little

step in the direction of goal point and the

process repeats. A local direction is a once and

for all determined direction facing the obstacle;

it can either be clockwise or anti-clockwise. For

the sake of clarity I have always assumed it to

be anti-clockwise. Instead of like the Bug 1 the

robot takes advantage of opportunities that look

more promising

II. CONCLUSIONS

The Bug 1 Algorithm is very much simple to

implement .But it take more time and distance

than other algorithms. Also it has more memory

than other algorithms to store each point or

pixel on the screen ,which is used to calculate

distance from Start to Goal point, because in

this algorithm robot traveled all the points

covered by perimeter of the obstacle , also find

out next nearest point towards Goal.

The Bug 2 Algorithm is improved algorithm in

some sense because it does not have to follow

all perimeters of the obstacles it faces. It leaves

the obstacles when it meets intersection

between line from start point to goal point and

obstacles if possible. So it leaves the points as

close as goal but sometimes this technique

cause serious problem. As I mentioned, if bug

Savita Kshirsagar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 NCICT 2010 Special Issue 37

selects wrong direction in escaping spiral

obstacle, it has to take a walk even much more

than Bug 1 algorithm. Example shows how it

works and situation when exhausted and when

failed. Bug 2 and Bug l are the least complicated.

To implement the Bug Algorithm, 2 algorithms

such as Bug 1, Bug 2 algorithms are

implemented in java.

In order to implement these Bug

Algorithms, a main GUI is developed in

java, where user can select individual

algorithms. There are only two algorithms

to implement but in these two we have

also included left and right side of the

robot, i.e. Bug 1R means robot travel

form right side. Same we implement Bug

1L, Bug 2R, and Bug 2L. User can select

any one of the algorithm with any one of

the obstacle. There are four different

shapes of obstacles used in this

implementation. Also Special Case

obstacle especially for Bug 1 and Bug 2

Algorithms to show the limitation of Bug

2. Special Case obstacle is a complex

obstacle.

Thus we will also develop the Tangent Bug,

Dist Bug, Wedge Bug, and Rover Bug. The

Tangent Bug deals with finite distance sensing.

Tangent Bug is useful in unbounded

environments. In addition, it produces “locally

optimal “solutions, that is, the resultant paths

are the shortest length possible given the use of

solely local information. “Wedge Bug”

algorithm to address the shortcoming of

Tangent Bug, as a step towards a more

practical path planner for flight micro rovers.

Wedge Bug is complete, correct, and relies

solely upon the robot’s sensors.

References:

 [1] Howie Choset, Kevin Lynch, Seth Hutchinson, Geore

Kantor, Wolfram Burgard, Lydia Kavraki and Sebastain

Thrun. Principal of Robot Motion: Theory, Algorithms,

and Implementation. September 14, 2007.

 [2] I. Kamon, E. Rimon, and E. Rivlin. Tangent bug: A range-

sensor based navigation algorithm. Int. Journal of

Robotics Research, 17(9):934-953, 1998.

 [3] .V. Lumelsky and T. Skewis, Incorporating range sensing

in the robot navigation function, IEEE Transactions on

Systems Man and Cybernetics, vol. 20, pp. 1058-1068, 1990.

[4] .V. Lumelsky and Stepanov, Path-planning strategies for a

point mobile automaton amidst unknown obstacles of

arbitrary shape, in Autonomous Robots Vehicles, I.J. Cox,

G.T. Wilfong (Eds), New York, Springer, pp. 1058-1068,

1990.

[5]. I. Kamon, E. Rimon, and E. Rivlin, “A New Range-Sensor

Based Globally Convergent Navigation Algorithm for

Mobile Robots,” CIS-Center of Intelligent Systems 9517,

Computer Science Dept., Technion, Israel, 1995.

[6]. S. L. Laubach J. W. Burdick , “An Autonomous Sensor-

Based Path-Planner for Planetary Micro rovers” Jet

Propulsion Laboratory Department of Mechanical

Engineering, California Institute of Technology California

Institute of Technology Pasadena, CA 91109 Pasadena, CA

91125 [209] K. Kanazawa, D. Koller,

[7].V. Lumelsky and T. Skewis, “Incorporating Range Sensing in

the Robot Navigation Function”, IEEE transactions on

systems, man and cybernetics.

[8]. I. Kamon and E. Rivlin, "Sensor based motion planning with

global proofs", IEEE transactions on robotics and

automation.

[9] M.H. Lee and H.R. Nicholls, “Tactile sensing for

mechatronics- a state of-the-art surgery,” Mechatronics, vol.

9, no. 1, pp. 1-31, Feb. 1999.

[10] Mark H. Lee, “Tactile sensing: new directions, new

challenges,” International Journal of Robotics Research,

vol. 19, no. 7, pp. 636-643,July 2000.

Savita Kshirsagar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 NCICT 2010 Special Issue 38

